Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Open Forum Infect Dis ; 11(4): ofae146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628951

RESUMO

Background: The performance of chest x-ray (CXR) features for Pneumocystis pneumonia (PCP) diagnosis has been evaluated in small studies. We conducted a systematic review and meta-analysis to describe CXR changes in adults with HIV-associated laboratory-confirmed PCP, comparing these with non-PCP respiratory disease. Methods: We searched databases for studies reporting CXR changes in people >15 years old with HIV and laboratory-confirmed PCP and those with non-PCP respiratory disease. CXR features were grouped using consensus terms. Proportions were pooled and odds ratios (ORs) generated using random-effects meta-analysis, with subgroup analyses by CD4 count, study period, radiology review method, and study region. Results: Fifty-one studies (with 1821 PCP and 1052 non-PCP cases) were included. Interstitial infiltrate (59%; 95% CI, 52%-66%; 36 studies, n = 1380; I2 = 85%) and ground-glass opacification (48%; 95% CI, 15%-83%; 4 studies, n = 57; I2 = 86%) were common in PCP. Cystic lesions, central lymphadenopathy, and pneumothorax were infrequent. Pleural effusion was rare in PCP (0%; 95% CI, 0%-2%). Interstitial infiltrate (OR, 2.3; 95% CI, 1.4-3.9; I2 = 60%), interstitial-alveolar infiltrate (OR, 10.2; 95% CI, 3.2-32.4; I2 = 0%), and diffuse CXR changes (OR, 7.3; 95% CI, 2.7-20.2; I2 = 87%) were associated with PCP diagnosis. There was loss of association with alveolar infiltrate in African studies. Conclusions: Diffuse CXR changes and interstitial-alveolar infiltrates indicate a higher likelihood of PCP. Pleural effusion, lymphadenopathy, and focal alveolar infiltrates suggest alternative causes. These findings could be incorporated into clinical algorithms to improve diagnosis of HIV-associated PCP.

2.
Glob Heart ; 19(1): 34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638124

RESUMO

Background: COVID-19 cardiovascular research from Africa is limited. This study describes cardiovascular risk factors, manifestations, and outcomes of patients hospitalised with COVID-19 in the African region, with an overarching goal to investigate whether important differences exist between African and other populations, which may inform health policies. Methods: A multinational prospective cohort study was conducted on adults hospitalised with confirmed COVID-19, consecutively admitted to 40 hospitals across 23 countries, 6 of which were African countries. Of the 5,313 participants enrolled globally, 948 were from African sites (n = 9). Data on demographics, pre-existing conditions, clinical outcomes in hospital (major adverse cardiovascular events (MACE), renal failure, neurological events, pulmonary outcomes, and death), 30-day vitality status and re-hospitalization were assessed, comparing African to non-African participants. Results: Access to specialist care at African sites was significantly lower than the global average (71% vs. 95%), as were ICU admissions (19.4% vs. 34.0%) and COVID-19 vaccination rates (0.6% vs. 7.4%). The African cohort was slightly younger than the non-African cohort (55.0 vs. 57.5 years), with higher rates of hypertension (48.8% vs. 46.9%), HIV (5.9% vs. 0.3%), and Tuberculosis (3.6% vs. 0.3%). In African sites, a higher proportion of patients suffered cardiac arrest (7.5% vs. 5.1%) and acute kidney injury (12.7% vs. 7.2%), with acute kidney injury (AKI) appearing to be one of the strongest predictors of MACE and death in African populations compared to other populations. The overall mortality rate was significantly higher among African participants (18.2% vs. 14.2%). Conclusions: Overall, hospitalised African patients with COVID-19 had a higher mortality despite a lower mean age, contradicting literature that had previously reported a lower mortality attributed to COVID-19 in Africa. African sites had lower COVID-19 vaccination rates and higher AKI rates, which were positively associated with increased mortality. In conclusion, African patients were hospitalized with more severe COVID-19 cases and had poorer outcomes.


Assuntos
Injúria Renal Aguda , COVID-19 , Adulto , Humanos , COVID-19/epidemiologia , COVID-19/complicações , Estudos Prospectivos , Vacinas contra COVID-19 , Injúria Renal Aguda/epidemiologia , África/epidemiologia , Fatores de Risco , Estudos Retrospectivos
3.
Cell Host Microbe ; 32(2): 162-169.e3, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38211583

RESUMO

Ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution has given rise to recombinant Omicron lineages that dominate globally (XBB.1), as well as the emergence of hypermutated variants (BA.2.86). In this context, durable and cross-reactive T cell immune memory is critical for continued protection against severe COVID-19. We examined T cell responses to SARS-CoV-2 approximately 1.5 years since Omicron first emerged. We describe sustained CD4+ and CD8+ spike-specific T cell memory responses in healthcare workers in South Africa (n = 39) who were vaccinated and experienced at least one SARS-CoV-2 infection. Spike-specific T cells are highly cross-reactive with all Omicron variants tested, including BA.2.86. Abundant nucleocapsid and membrane-specific T cells are detectable in most participants. The bulk of SARS-CoV-2-specific T cell responses have an early-differentiated phenotype, explaining their persistent nature. Overall, hybrid immunity leads to the accumulation of spike and non-spike T cells evident 3.5 years after the start of the pandemic, with preserved recognition of highly mutated SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Células T de Memória , Pandemias , Glicoproteína da Espícula de Coronavírus/genética
4.
iScience ; 27(1): 108728, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38235336

RESUMO

SARS-CoV-2 infection in children typically results in asymptomatic or mild disease. There is a paucity of studies on SARS-CoV-2 antiviral immunity in African children. We investigated SARS-CoV-2-specific T cell responses in 71 unvaccinated asymptomatic South African children who were seropositive or seronegative for SARS-CoV-2. SARS-CoV-2-specific CD4+ T cell responses were detectable in 83% of seropositive and 60% of seronegative children. Although the magnitude of the CD4+ T cell response did not differ significantly between the two groups, their functional profiles were distinct, with SARS-CoV-2 seropositive children exhibiting a higher proportion of polyfunctional T cells compared to their seronegative counterparts. The frequency of SARS-CoV-2-specific CD4+ T cells in seronegative children was associated with the endemic human coronavirus (HCoV) HKU1 IgG response. Overall, the presence of SARS-CoV-2-responding T cells in seronegative children may result from cross-reactivity to endemic coronaviruses and could contribute to the relative protection from disease observed in SARS-CoV-2-infected children.

5.
PLoS Pathog ; 19(11): e1011772, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37943890

RESUMO

The impact of previous SARS-CoV-2 infection on the durability of Ad26.COV2.S vaccine-elicited responses, and the effect of homologous boosting has not been well explored. We followed a cohort of healthcare workers for 6 months after receiving the Ad26.COV2.S vaccine and a further one month after they received an Ad26.COV2.S booster dose. We assessed longitudinal spike-specific antibody and T cell responses in individuals who had never had SARS-CoV-2 infection, compared to those who were infected with either the D614G or Beta variants prior to vaccination. Antibody and T cell responses elicited by the primary dose were durable against several variants of concern over the 6 month follow-up period, regardless of infection history. However, at 6 months after first vaccination, antibody binding, neutralization and ADCC were as much as 59-fold higher in individuals with hybrid immunity compared to those with no prior infection. Antibody cross-reactivity profiles of the previously infected groups were similar at 6 months, unlike at earlier time points, suggesting that the effect of immune imprinting diminishes by 6 months. Importantly, an Ad26.COV2.S booster dose increased the magnitude of the antibody response in individuals with no prior infection to similar levels as those with previous infection. The magnitude of spike T cell responses and proportion of T cell responders remained stable after homologous boosting, concomitant with a significant increase in long-lived early differentiated CD4 memory T cells. Thus, these data highlight that multiple antigen exposures, whether through infection and vaccination or vaccination alone, result in similar boosts after Ad26.COV2.S vaccination.


Assuntos
Ad26COVS1 , COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos , Vacinação , Imunidade Adaptativa , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunidade Humoral
6.
medRxiv ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37292954

RESUMO

SARS-CoV-2 infection in children typically results in asymptomatic or mild disease. There is a paucity of studies on antiviral immunity in African children. We investigated SARS-CoV-2-specific T cell responses in 71 unvaccinated asymptomatic South African children who were seropositive or seronegative for SARS-CoV-2. SARS-CoV-2-specific CD4+ T cell responses were detectable in 83% of seropositive and 60% of seronegative children. Although the magnitude of the CD4+ T cell response did not differ significantly between the two groups, their functional profiles were distinct, with SARS-CoV-2 seropositive children exhibiting a higher proportion of polyfunctional T cells compared to their seronegative counterparts. The frequency of SARS-CoV-2-specific CD4+ T cells in seronegative children was associated with the endemic human coronavirus (HCoV) HKU1 IgG response. Overall, the presence of SARS-CoV-2-responding T cells in seronegative children may result from cross-reactivity to endemic coronaviruses and could contribute to the relative protection from disease observed in SARS-CoV-2-infected children.

7.
medRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993404

RESUMO

The impact of previous SARS-CoV-2 infection on the durability of Ad26.COV2.S vaccine-elicited responses, and the effect of homologous boosting has not been well explored. We followed a cohort of healthcare workers for 6 months after receiving the Ad26.COV2.S vaccine and a further one month after they received an Ad26.COV2.S booster dose. We assessed longitudinal spike-specific antibody and T cell responses in individuals who had never had SARS-CoV-2 infection, compared to those who were infected with either the D614G or Beta variants prior to vaccination. Antibody and T cell responses elicited by the primary dose were durable against several variants of concern over the 6 month follow-up period, regardless of infection history. However, at 6 months after first vaccination, antibody binding, neutralization and ADCC were as much as 33-fold higher in individuals with hybrid immunity compared to those with no prior infection. Antibody cross-reactivity profiles of the previously infected groups were similar at 6 months, unlike at earlier time points suggesting that the effect of immune imprinting diminishes by 6 months. Importantly, an Ad26.COV2.S booster dose increased the magnitude of the antibody response in individuals with no prior infection to similar levels as those with previous infection. The magnitude of spike T cell responses and proportion of T cell responders remained stable after homologous boosting, concomitant with a significant increase in long-lived early differentiated CD4 memory T cells. Thus, these data highlight that multiple antigen exposures, whether through infection and vaccination or vaccination alone, result in similar boosts after Ad26.COV2.S vaccination.

8.
Cell Rep Med ; 4(1): 100898, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36584684

RESUMO

Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposures, from infection or vaccination, can potently boost spike antibody responses. Less is known about the impact of repeated exposures on T cell responses. Here, we compare the prevalence and frequency of peripheral SARS-CoV-2-specific T cell and immunoglobulin G (IgG) responses in 190 individuals with complex SARS-CoV-2 exposure histories. As expected, an increasing number of SARS-CoV-2 spike exposures significantly enhances the magnitude of IgG responses, while repeated exposures improve the number of T cell responders but have less impact on SARS-CoV-2 spike-specific T cell frequencies in the circulation. Moreover, we find that the number and nature of exposures (rather than the order of infection and vaccination) shape the spike immune response, with spike-specific CD4 T cells displaying a greater polyfunctional potential following hybrid immunity compared with vaccination only. Characterizing adaptive immunity from an evolving viral and immunological landscape may inform vaccine strategies to elicit optimal immunity as the pandemic progress.


Assuntos
COVID-19 , Imunoglobulina G , Linfócitos T , Humanos , Formação de Anticorpos , Linfócitos T CD4-Positivos , COVID-19/epidemiologia , SARS-CoV-2
9.
S Afr J Infect Dis ; 38(1): 550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38223432

RESUMO

Background: The emergence of genetic variants of SARS-CoV-2 was associated with changing epidemiological characteristics throughout coronavirus disease 2019 (COVID-19) pandemic in population-based studies. Individual-level data on the clinical characteristics of infection with different SARS-CoV-2 variants in African countries is less well documented. Objectives: To describe the evolving clinical differences observed with the various SARS-CoV-2 variants of concern and compare the Omicron-driven wave in infections to the previous Delta-driven wave. Method: We performed a retrospective observational cohort study among patients admitted to a South African referral hospital with COVID-19 pneumonia. Patients were stratified by epidemiological wave period, and in a subset, the variants associated with each wave were confirmed by genomic sequencing. Outcomes were analysed by Cox proportional hazard models. Results: We included 1689 patients were included, representing infection waves driven predominantly by ancestral, Beta, Delta and Omicron BA1/BA2 & BA4/BA5 variants. Crude 28-day mortality was 25.8% (34/133) in the Omicron wave period versus 37.1% (138/374) in the Delta wave period (hazard ratio [HR] 0.68 [95% CI 0.47-1.00] p = 0.049); this effect persisted after adjustment for age, gender, HIV status and presence of cardiovascular disease (adjusted HR [aHR] 0.43 [95% CI 0.28-0.67] p < 0.001). Hospital-wide SARS-CoV-2 admissions and deaths were highest during the Delta wave period, with a decoupling of SARS-CoV-2 deaths and overall deaths thereafter. Conclusion: There was lower in-hospital mortality during Omicron-driven waves compared with the prior Delta wave, despite patients admitted during the Omicron wave being at higher risk. Contribution: This study summarises clinical characteristics associated with SARS-CoV-2 variants during the COVID-19 pandemic at a South African tertiary hospital, demonstrating a waning impact of COVID-19 on healthcare services over time despite epidemic waves driven by new variants. Findings suggest the absence of increasing virulence from later variants and protection from population and individual-level immunity.

10.
Open Forum Infect Dis ; 9(7): ofac285, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35859991

RESUMO

Background: Randomized controlled trials (RCTs) have reported inconsistent effects from intensified anticoagulation on clinical outcomes in coronavirus disease 2019 (COVID-19). We performed an aggregate data meta-analysis from available trials to quantify effect on nonfatal and fatal outcomes and identify subgroups who may benefit. Methods: We searched multiple databases for RCTs comparing intensified (intermediate or therapeutic dose) vs prophylactic anticoagulation in adults with laboratory-confirmed COVID-19 through 19 January 2022. We used random-effects meta-analysis to estimate pooled risk ratios for mortality, thrombotic, and bleeding events (at end of follow-up or discharge) and performed subgroup analysis for clinical setting and dose of intensified anticoagulation. Results: Eleven RCTs were included (N = 5873). Intensified vs prophylactic anticoagulation was not associated with a mortality reduction up to 45 days (risk ratio [RR], 0.93 [95% confidence interval {CI}, .79-1.10]). There was a possible signal of mortality reduction for non-intensive care unit (ICU) patients, although with low precision and high heterogeneity (5 studies; RR, 0.84 [95% CI, .49-1.44]; I 2 = 75%). Risk of venous thromboembolism was reduced (RR, 0.53 [95% CI, .41-.69]; I 2 = 0%), with effect driven by therapeutic rather than intermediate dosing (interaction P = .04). Major bleeding was increased with intensified anticoagulation (RR, 1.73 [95% CI, 1.17-2.56]) with no interaction for dosing and clinical setting. Conclusions: Intensified anticoagulation has no effect on mortality among hospitalized adults with COVID-19 and is associated with increased bleeding risk. The observed reduction in venous thromboembolism risk and trend toward reduced mortality in non-ICU settings requires exploration in additional RCTs. Clinical Trials Registration. CRD42021273449 (PROSPERO).

12.
medRxiv ; 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35291298

RESUMO

Background: Randomised controlled trials (RCTs) have reported inconsistent effects from intensified anticoagulation on clinical outcomes in Covid-19. We performed an aggregate data meta-analysis from available trials to quantify effect on non-fatal and fatal outcomes and identify subgroups who may benefit. Methods: We searched multiple databases for RCTs comparing intensified (intermediate or therapeutic dose) versus standard prophylactic dose anticoagulation in adults with laboratory-confirmed Covid-19 through 19 January 2022. The primary efficacy outcome was all-cause mortality at end of follow-up or discharge. We used random effects meta-analysis to estimate pooled risk ratios for mortality, thrombotic, and bleeding events, and performed subgroup analysis for clinical setting and dose of intensified anticoagulation. Results: Eleven RCTs were included (n = 5873). Intensified anticoagulation was not associated with a reduction in mortality for up to 45 days compared with prophylactic anticoagulation: 17.5% (501/2861) died in the intensified anticoagulation group and 18.8% (513/2734) died in the prophylactic anticoagulation group, relative risk (RR) 0.93; 95%CI, 0.79 - 1.10. On subgroup analysis, there was a possible signal of mortality reduction for inpatients admitted to general wards, although with low precision and high heterogeneity (5 studies; RR 0.84; 95% CI, 0.49 - 1.44; I 2 = 75%) and not significantly different to studies performed in the ICU (interaction P = 0.51). Risk of venous thromboembolism was reduced with intensified anticoagulation compared with prophylaxis (8 studies; RR 0.53, 95%CI 0.41 - 0.69; I 2 = 0%). This effect was driven by therapeutic rather than intermediate dosing on subgroup analysis (interaction P =0.04). Major bleeding was increased with use of intensified anticoagulation (RR 1.73, 95% CI 1.17 - 2.56) with no interaction for dosing and clinical setting. Conclusion: Intensified anticoagulation has no effect on short term mortality among hospitalised adults with Covid-19 and is associated with increased risk of bleeding. The observed reduction in venous thromboembolism risk and trend towards reduced mortality in non-ICU hospitalised patients requires exploration in additional RCTs. Summary: In this aggregate data meta-analysis, use of intensified anticoagulation had no effect on short term mortality among hospitalised adults with Covid-19 and was associated with increased risk of bleeding.

13.
Nature ; 603(7901): 488-492, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35102311

RESUMO

The SARS-CoV-2 Omicron variant (B.1.1.529) has multiple spike protein mutations1,2 that contribute to viral escape from antibody neutralization3-6 and reduce vaccine protection from infection7,8. The extent to which other components of the adaptive response such as T cells may still target Omicron and contribute to protection from severe outcomes is unknown. Here we assessed the ability of T cells to react to Omicron spike protein in participants who were vaccinated with Ad26.CoV2.S or BNT162b2, or unvaccinated convalescent COVID-19 patients (n = 70). Between 70% and 80% of the CD4+ and CD8+ T cell response to spike was maintained across study groups. Moreover, the magnitude of Omicron cross-reactive T cells was similar for Beta (B.1.351) and Delta (B.1.617.2) variants, despite Omicron harbouring considerably more mutations. In patients who were hospitalized with Omicron infections (n = 19), there were comparable T cell responses to ancestral spike, nucleocapsid and membrane proteins to those in patients hospitalized in previous waves dominated by the ancestral, Beta or Delta variants (n = 49). Thus, despite extensive mutations and reduced susceptibility to neutralizing antibodies of Omicron, the majority of T cell responses induced by vaccination or infection cross-recognize the variant. It remains to be determined whether well-preserved T cell immunity to Omicron contributes to protection from severe COVID-19 and is linked to early clinical observations from South Africa and elsewhere9-12.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Reações Cruzadas/imunologia , Imunidade Celular , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Vacinas contra COVID-19/imunologia , Convalescença , Hospitalização , Humanos , Pessoa de Meia-Idade , SARS-CoV-2/química , SARS-CoV-2/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA