Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Ethnopharmacol ; 335: 118647, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39094756

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jiawei-Xiaoyao Pill (JWX), a classic formula in traditional Chinese medicine, is derived from Xiaoyao Pill by adding significant amounts of Gardeniae Fructus (GF) and Moutan Cortex (MC). It is frequently used for the treatment of depression. JWX has been demonstrated to uniquely elicit rapid antidepressant-like effects within the prescribed dosage range. To date, GF has been shown to have rapid antidepressant-like effects, but a much higher dose is required than its proportion in JWX. It is assumed that the synergism of GF with a minimum number of other herbs in JWX serves as a refined formula that exerts these rapid antidepressant-like effects. Identification of a refined formula is important for prioritizing the herbs and ingredients to optimize the quality control of JWX. However, such a refined formula for JWX has not been identified yet. AIM OF THE STUDY: Here we aimed to identify a refined formula derived from JWX for optimized rapid antidepressant-like effects. Since the neuroinflammation mechanism involving in depression treatment has not been previously investigated for JWX, we tested the mechanism for both JWX and the refined formula. MATERIALS AND METHODS: Individual herbs (MC; ASR, Angelica Sinensis Radix; Bupleuri Radix; Paeonia Radix Alba) that show antidepressant-like responses were mixed with GF at the proportional dosage in JWX to identify the refined formula. Rapid antidepressant-like effects were assessed by using NSF (Novelty Suppressed Feeding Test) and other behavioral tests following a single administration. The identified formula was further tested in a lipopolysaccharide (LPS)-induced depressive model, and the molecular signaling mechanisms were investigated using Western blot analysis, immunofluorescence, and pharmacological inhibition of mTOR signaling. Scopolamine (Scop) was used as a positive control for induction of rapid antidepressant effects. RESULTS: A combination of GF, MC and ASR (GMA) at their dosages proportional to JWX induced behavioral signs of rapid antidepressant-like responses in both normal and LPS-treated mice, with the antidepressant-like effects sustained for 5 d. Similar to JWX or Scop, GMA rapidly reduced the neuroinflammation signaling of Iba-1-NF-кB, enhanced neuroplasticity signaling of CaMKII-mTOR-BDNF, and attenuated the upregulated expressions of the NMDAR sub-units GluN1 and GluN2B in the hippocampus of LPS-treated mice. GMA, JWX and Scop rapidly restored the number of BDNF-positive cells reduced by LPS treatment in the CA3 region of the hippocampus. Furthermore, rapamycin, a selective inhibitor of mTOR, blunted the rapid antidepressant-like effects and hippocampal BDNF signaling upregulation by GMA. CONCLUSION: GMA may serve as a refined formula from JWX, capable of inducing rapid antidepressant-like effects. In the LPS-induced depression model, the effects of GMA were mediated via rapidly alleviating neuroinflammation and enhancing neuroplasticity.

2.
Mil Med Res ; 11(1): 49, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044298

RESUMO

BACKGROUND: The development of ketamine-like rapid antidepressants holds promise for enhancing the therapeutic efficacy of depression, but the underlying cellular and molecular mechanisms remain unclear. Implicated in depression regulation, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is investigated here to examine its role in mediating the rapid antidepressant response. METHODS: The onset of antidepressant response was assessed through depression-related behavioral paradigms. The signaling mechanism of PACAP in the hippocampal dentate gyrus (DG) was evaluated by utilizing site-directed gene knockdown, pharmacological interventions, or optogenetic manipulations. Overall, 446 mice were used for behavioral and molecular signaling testing. Mice were divided into control or experimental groups randomly in each experiment, and the experimental manipulations included: chronic paroxetine treatments (4, 9, 14 d) or a single treatment of ketamine; social defeat or lipopolysaccharides-injection induced depression models; different doses of PACAP (0.4, 2, 4 ng/site; microinjected into the hippocampal DG); pharmacological intra-DG interventions (CALM and PACAP6-38); intra-DG viral-mediated PACAP RNAi; and opotogenetics using channelrhodopsins 2 (ChR2) or endoplasmic natronomonas halorhodopsine 3.0 (eNpHR3.0). Behavioral paradigms included novelty suppressed feeding test, tail suspension test, forced swimming test, and sucrose preference test. Western blotting, ELISA, or quantitative real-time PCR (RT-PCR) analysis were used to detect the expressions of proteins/peptides or genes in the hippocampus. RESULTS: Chronic administration of the slow-onset antidepressant paroxetine resulted in an increase in hippocampal PACAP expression, and intra-DG blockade of PACAP attenuated the onset of the antidepressant response. The levels of hippocampal PACAP expression were reduced in both two distinct depression animal models and intra-DG knockdown of PACAP induced depression-like behaviors. Conversely, a single infusion of PACAP into the DG region produced a rapid and sustained antidepressant response in both normal and chronically stressed mice. Optogenetic intra-DG excitation of PACAP-expressing neurons instantly elicited antidepressant responses, while optogenetic inhibition induced depression-like behaviors. The longer optogenetic excitation/inhibition elicited the more sustained antidepressant/depression-like responses. Intra-DG PACAP infusion immediately facilitated the signaling for rapid antidepressant response by inhibiting calcium/calmodulin-dependent protein kinase II (CaMKII)-eukaryotic elongation factor 2 (eEF2) and activating the mammalian target of rapamycin (mTOR). Pre-activation of CaMKII signaling within the DG blunted PACAP-induced rapid antidepressant response as well as eEF2-mTOR-brain-derived neurotrophic factor (BDNF) signaling. Finally, acute ketamine treatment upregulated hippocampal PACAP expression, whereas intra-DG blockade of PACAP signaling attenuated ketamine's rapid antidepressant response. CONCLUSIONS: Activation of hippocampal PACAP signaling induces a rapid antidepressant response through the regulation of CaMKII inhibition-governed eEF2-mTOR-BDNF signaling.


Assuntos
Depressão , Hipocampo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Transdução de Sinais , Animais , Masculino , Camundongos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Paroxetina/farmacologia , Paroxetina/uso terapêutico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Transdução de Sinais/efeitos dos fármacos
3.
Pharmaceuticals (Basel) ; 17(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38931336

RESUMO

Fear-related disorders, including post-traumatic stress disorder (PTSD), and anxiety disorders are pervasive psychiatric conditions marked by persistent fear, stemming from its dysregulated acquisition and extinction. The primary treatment for these disorders, exposure therapy (ET), relies heavily on fear extinction (FE) principles. Adolescence, a vulnerable period for developing psychiatric disorders, is characterized by neurobiological changes in the fear circuitry, leading to impaired FE and increased susceptibility to relapse following ET. Ketamine, known for relieving anxiety and reducing PTSD symptoms, influences fear-related learning processes and synaptic plasticity across the fear circuitry. Our study aimed to investigate the effects of ketamine (10 mg/kg) on FE in adolescent male C57 BL/6 mice at the behavioral and molecular levels. We analyzed the protein and gene expression of synaptic plasticity markers in the hippocampus (HPC) and prefrontal cortex (PFC) and sought to identify neural correlates associated with ketamine's effects on adolescent extinction learning. Ketamine ameliorated FE in the adolescent males, likely affecting the consolidation and/or recall of extinction memory. Ketamine also increased the Akt and mTOR activity and the GluA1 and GluN2A levels in the HPC and upregulated BDNF exon IV mRNA expression in the HPC and PFC of the fear-extinguished mice. Furthermore, ketamine increased the c-Fos expression in specific brain regions, including the ventral HPC (vHPC) and the left infralimbic ventromedial PFC (IL vmPFC). Providing a comprehensive exploration of ketamine's mechanisms in adolescent FE, our study suggests that ketamine's effects on FE in adolescent males are associated with the activation of hippocampal Akt-mTOR-GluA1 signaling, with the vHPC and the left IL vmPFC as the proposed neural correlates.

4.
Expert Opin Drug Deliv ; 21(2): 279-307, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349540

RESUMO

INTRODUCTION: Photodynamic therapy (PDT) has gained significant attention due to its superiority over conventional treatments. In the context of skin cancers and nonmalignant skin diseases, topical application of photosensitizer formulations onto affected skin, followed by illumination, offers distinct advantages. Topical PDT simplifies therapy by providing easy access to the skin, increasing drug concentration within the target area, and confining residual photosensitivity to the treated skin. However, the effectiveness of topical PDT is often hindered by challenges such as limited skin penetration or photosensitizer instability. Additionally, the hypoxic tumor environment poses further limitations. Nanocarriers present a promising solution to address these challenges. AREAS COVERED: The objective of this review is to comprehensively explore and highlight the role of various nanocarriers in advancing topical PDT for the treatment of skin diseases. The primary focus is to address the challenges associated with conventional topical PDT approaches and demonstrate how nanotechnology-based strategies can overcome these challenges, thereby improving the overall efficiency and efficacy of PDT. EXPERT OPINION: Nanotechnology has revolutionized the field of PDT, offering innovative tools to combat the unfavorable features of photosensitizers and hurdles in PDT. Nanocarriers enhance skin penetration and stability of photosensitizers, provide controlled drug release, reduce needed dose, increase production of reactive oxygen species, while reducing side effects, thereby improving PDT effectiveness.


Assuntos
Fotoquimioterapia , Dermatopatias , Neoplasias Cutâneas , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Dermatopatias/tratamento farmacológico , Pele
5.
Life Sci ; 326: 121803, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245840

RESUMO

Major depressive disorder (MDD) afflicts approximately 5 % of the world population, and about 30-50 % of patients who receive classical antidepressant medications do not achieve complete remission (treatment resistant depressive patients). Emerging evidence suggests that targeting opioid receptors mu (MOP), kappa (KOP), delta (DOP), and the nociceptin/orphanin FQ receptor (NOP) may yield effective therapeutics for stress-related psychiatric disorders. As depression and pain exhibit significant overlap in their clinical manifestations and molecular mechanisms involved, it is not a surprise that opioids, historically used to alleviate pain, emerged as promising and effective therapeutic options in the treatment of depression. The opioid signaling is dysregulated in depression and numerous preclinical studies and clinical trials strongly suggest that opioid modulation can serve as either an adjuvant or even an alternative to classical monoaminergic antidepressants. Importantly, some classical antidepressants require the opioid receptor modulation to exert their antidepressant effects. Finally, ketamine, a well-known anesthetic whose extremely efficient antidepressant effects were recently discovered, was shown to mediate its antidepressant effects via the endogenous opioid system. Thus, although opioid system modulation is a promising therapeutical venue in the treatment of depression further research is warranted to fully understand the benefits and weaknesses of such approach.


Assuntos
Transtorno Depressivo Maior , Ketamina , Humanos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Ketamina/farmacologia , Ketamina/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Depressão/tratamento farmacológico , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Receptores Opioides mu
6.
Brain Res Bull ; 192: 156-167, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36410566

RESUMO

Adolescence is a key phase of development for perturbations in fear extinction, with inability to adequately manage fear a potent factor for developing psychiatric disorders in adulthood. However, while behavioral correlates of adolescent fear regulation are established to a degree, molecular mediators of extinction learning in adolescence remain largely unknown. In this study, we observed fear acquisition and fear extinction (across 4 and 7 days) of adolescent and adult mice of both sexes and investigated how hippocampal levels of different plasticity markers relate to extinction learning. While fear was acquired evenly in males and females of both ages, fear extinction was found to be impaired in adolescent males. We also observed lower levels of GluA1, GLUN2A and GLUN2B subunits in male adolescents following fear acquisition, with an increase in their expression, as well as the activity of Erk-mTOR pathway over subsequent extinction sessions, which was paralleled with improved extinction learning. On the other hand, we detected no changes in plasticity-related proteins after fear acquisition in females, with alterations in GluA1, GluA4 and GLUN2B levels across fear extinction sessions. Additionally, we did not discern any pattern regarding the Erk-mTOR activity in female mice associated with their extinction performance. Overall, our research identifies sex-specific synaptic properties in the hippocampus that underlie developmentally regulated differences in fear extinction learning. We also point out hippocampal NMDA-Erk-mTOR signaling as the driving force behind successful fear extinction in male adolescents, highlighting this pathway as a potential therapeutic target for fear-related disorders in the adolescent population.


Assuntos
Extinção Psicológica , Medo , Camundongos , Masculino , Feminino , Animais , Medo/fisiologia , Extinção Psicológica/fisiologia , Hipocampo/metabolismo , Transdução de Sinais/fisiologia , Aprendizagem
7.
Front Behav Neurosci ; 16: 987697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172468

RESUMO

Clinical depression is a multifactorial disorder and one of the leading causes of disability worldwide. The alterations in tryptophan metabolism such as changes in the levels of serotonin, kynurenine, and kynurenine acid have been implicated in the etiology of depression for more than 50 years. In recent years, accumulated evidence has revealed that gut microbial communities, besides being essential players in various aspects of host physiology and brain functioning are also implicated in the etiology of depression, particularly through modulation of tryptophan metabolism. Therefore, the aim of this review is to summarize the evidence of the role of gut bacteria in disturbed tryptophan metabolism in depression. We summed up the effects of microbiota on serotonin, kynurenine, and indole pathway of tryptophan conversion relevant for understanding the pathogenesis of depressive behavior. Moreover, we reviewed data regarding the therapeutic effects of probiotics, particularly through the regulation of tryptophan metabolites. Taken together, these findings can open new possibilities for further improvement of treatments for depression based on the microbiota-mediated modulation of the tryptophan pathway.

8.
Life Sci ; 297: 120470, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35283177

RESUMO

The brain is the softest organ in the body, and any change in the mechanical properties of the tissue induces the activation of glial cells, astrocytes and microglia. Amyloid plaques, one of the main pathological features of Alzheimer's disease (AD), are substantially harder than the surrounding brain tissue and can activate astrocytes and microglia resulting in the glial engulfment of plaques. Durotaxis, a migratory preference towards stiffer tissue, is prompting microglia to form a mechanical barrier around plaques reducing amyloid ß (Aß) induced neurotoxicity. Mechanoreceptors are highly expressed in the brain, particularly in microglia. The large increase in the expression of the mechanoreceptor Piezo1 was observed in the brains from AD animal models and AD patients in plaque encompassing glia. Importantly, Piezo1 function is regulated via force-from-lipids through the lipid composition of the membrane and membranous incorporation of polyunsaturated fatty acids (PUFAs) can affect the function of Piezo1 altering mechanosensitive properties of the cell. On the other hand, PUFAs dietary supplementation can alter microglial polarization, the envelopment of amyloid plaques, and immune response and Piezo1 activity was implicated in the similar modulations of microglia behavior. Finally, PUFAs treatment is currently in use in medical trials as the therapy for sickle cell anemia, a disease linked with the mutations in Piezo1. Further studies are needed to elucidate the connection between PUFAs, Piezo1 expression, and microglia behavior in the AD brain. These findings could open new possibilities in harnessing microglia in AD and in developing novel therapeutic strategies.


Assuntos
Doença de Alzheimer , Ácidos Graxos , Canais Iônicos , Microglia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Placa Amiloide/patologia
9.
J Neurosci Res ; 100(4): 947-969, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35165930

RESUMO

Fear-related disorders, mainly phobias and post-traumatic stress disorder, are highly prevalent, debilitating disorders that pose a significant public health problem. They are characterized by aberrant processing of aversive experiences and dysregulated fear extinction, leading to excessive expression of fear and diminished quality of life. The gold standard for treating fear-related disorders is extinction-based exposure therapy (ET), shown to be ineffective for up to 35% of subjects. Moreover, ET combined with traditional pharmacological treatments for fear-related disorders, such as selective serotonin reuptake inhibitors, offers no further advantage to patients. This prompted the search for ways to improve ET outcomes, with current research focused on pharmacological agents that can augment ET by strengthening fear extinction learning. Hallucinogenic drugs promote reprocessing of fear-imbued memories and induce positive mood and openness, relieving anxiety and enabling the necessary emotional engagement during psychotherapeutic interventions. Mechanistically, hallucinogens induce dynamic structural and functional neuroplastic changes across the fear extinction circuitry and temper amygdala's hyperreactivity to threat-related stimuli, effectively mitigating one of the hallmarks of fear-related disorders. This paper provides the first comprehensive review of hallucinogens' potential to alleviate symptoms of fear-related disorders by focusing on their effects on fear extinction and the underlying molecular mechanisms. We overview both preclinical and clinical studies and emphasize the advantages of hallucinogenic drugs over current first-line treatments. We highlight 3,4-methylenedioxymethamphetamine and ketamine as the most effective therapeutics for fear-related disorders and discuss the potential molecular mechanisms responsible for their potency with implications for improving hallucinogen-assisted psychotherapy.


Assuntos
Medo , Alucinógenos , Transtornos de Ansiedade , Extinção Psicológica , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Humanos , Qualidade de Vida
10.
J Neurosci Res ; 100(5): 1239-1253, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35184325

RESUMO

Adolescent stress predisposes individuals to increased risk for anxiety and depression in adulthood. The stress response is mediated by the glucocorticoid receptor (GR) via regulation of GR-responsive genes involved in brain reaction to stress. Although dysregulation of GR in depression is well documented, this is the first study investigating the role of GRα isoforms in pathogenesis of depression. We exposed adolescent male and female C57BL/6J mice to chronic unpredictable stress (CUS) for 12 days starting at postnatal day 28 (PND28). Tests evaluating anxiety and depressive-like behaviors were performed at PND70. We analyzed corticosterone concentrations in serum, levels of GRα isoforms (95, 67, 50, 40, and 25 kDa), and mRNA levels of GR-responsive genes (GR, FKBP5, BDNF, and IL-1ß) in the hippocampus and the prefrontal cortex (PFC). CUS increased anxiety and depressive-like behavior in adult animals of both sexes, but did not affect corticosterone serum levels, 95 and 67 kDa GR isoforms. However, the levels of shorter GRα isoforms (50, 40, and 25 kDa) were altered in adult mice underwent CUS, in sex- and brain structure-specific way. Changes in gene expression revealed that female depressive-like behavior could be related to increased levels of IL-1ß in hippocampus and reduced BDNF levels in both hippocampus and PFC. However, in males, adolescent CUS increased expression of GR in adult hippocampus and BDNF in PFC. These findings suggest that adolescent stress altered levels of GRα isoforms, especially those with lower molecular weight, in sex- and tissue-specific ways, contributing to anxiety and depression in adult mice.


Assuntos
Corticosterona , Receptores de Glucocorticoides , Animais , Ansiedade/etiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/metabolismo , Feminino , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal , Isoformas de Proteínas/metabolismo , Receptores de Glucocorticoides/genética , Estresse Psicológico/metabolismo
11.
Handb Clin Neurol ; 184: 481-495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034756

RESUMO

To adapt to the sustained demands of chronic stress, discrete brain circuits undergo structural and functional changes often resulting in anxiety disorders. In some individuals, anxiety disorders precede the development of motor symptoms of Parkinson's disease (PD) caused by degeneration of neurons in the substantia nigra (SN). Here, we present a circuit framework for probing a causal link between chronic stress, anxiety, and PD, which postulates a central role of abnormal neuromodulation of the SN's axon initial segment by brainstem inputs. It is grounded in findings demonstrating that the earliest PD pathologies occur in the stress-responsive, emotion regulation network of the brainstem, which provides the SN with dense aminergic and cholinergic innervation. SN's axon initial segment (AIS) has unique features that support the sustained and bidirectional propagation of activity in response to synaptic inputs. It is therefore, especially sensitive to circuit-mediated stress-induced imbalance of neuromodulation, and thus a plausible initiating site of neurodegeneration. This could explain why, although secondary to pathophysiologies in other brainstem nuclei, SN degeneration is the most extensive. Consequently, the cardinal symptom of PD, severe motor deficits, arise from degeneration of the nigrostriatal pathway rather than other brainstem nuclei. Understanding when and how circuit dysfunctions underlying anxiety can progress to neurodegeneration, raises the prospect of timed interventions for reversing, or at least impeding, the early pathophysiologies that lead to PD and possibly other neurodegenerative disorders.


Assuntos
Segmento Inicial do Axônio , Doença de Parkinson , Ansiedade , Transtornos de Ansiedade , Humanos , Substância Negra
12.
Behav Brain Res ; 417: 113625, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34637854

RESUMO

Inflammation plays a key role in the pathogenesis of the major depressive disorder. Namely, neuroinflammation can induce the production of neuroactive metabolites that interfere with N-methyl-D-aspartate receptors (NMDAR)-mediated glutamatergic neurotransmission and contribute to depressive-like behaviour. On the other hand, mammalian target of rapamycin (mTOR) activity with synaptogenic effects is the main mediator of antidepressant effects of several potent NMDAR antagonists. In this study, we investigated the specific role of GluN2A subunits of NMDAR on the activity of mTOR signaling and behaviour in lipopolysaccharide (LPS)-induces model of depression. The results showed that mice lacking GluN2A subunit did not display depressive-like behavior after the immune challenge, opposite to LPS-treated wild-type mice. Specifically, in GluN2A knockout mice, we estimated the activity of the mTOR pathway in the hippocampus and prefrontal cortex (PFC) by measuring synaptic levels of upstream regulators (p-Akt, p-ERK, and p-GSK3ß) and downstream effectors (p-mTOR, and p-p70S6K) of mTOR activity. In addition, we assessed the changes in the levels of two important synaptic markers, GluA1 and PSD-95. Contrary to downregulated mTOR signaling and decreased synaptic markers in LPS-treated wild-type animals, the resilience of GluN2A KO mice to depressive-like behaviour was paralleled with sustained mTOR signaling activity synaptic stability in hippocampus and PFC. Finally, we disclosed that resistance of GluN2A knockouts to LPS-induced depressive-like behavior was ERK-dependent. These findings demonstrate that GluN2A-ERK-mTOR signaling is a vulnerability factor of inflammation-related depressive behaviour, making this signaling pathway the promising target for developing novel antidepressants.


Assuntos
Depressão/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Hipocampo/metabolismo , Lipopolissacarídeos/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Depressão/induzido quimicamente , Masculino , Camundongos , Camundongos Knockout , Córtex Pré-Frontal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR
13.
Psychoneuroendocrinology ; 128: 105205, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33933892

RESUMO

Hypothalamic-pituitary-adrenal (HPA) axis activity mediates the relationship between childhood trauma (CT) and psychosis. The FKBP5 gene, one of the key regulators of HPA axis activity after stress exposure, has been found associated with psychosis. Allele-specific and CT related FKBP5 demethylation in intron 7 was revealed in different psychiatric disorders. However, no studies have investigated FKBP5 methylation in subjects with different genetic liability for psychosis. A total of 144 participants were included in the study: 48 patients with psychotic disorders, 50 unaffected siblings, and 46 healthy controls. CT was assessed by Childhood Trauma Questionnaire. The FKBP5 rs1360780 was genotyped and FKBP5 methylation analyses were performed using bisulfite conversion followed by Sanger sequencing at three CpG sites in intron 7. Mixed linear model was used to assess group differences depending on rs1360780 T allele and CT. Results showed a significant T allele-dependent decrease of FKBP5 methylation in patients compared to unaffected siblings and controls. Effect of interaction between T allele and CT exposure on FKBP5 demethylation was found in controls. No effect of both risk factors (T allele and CT) on FKBP5 methylation level was found in unaffected siblings. We confirmed previous evidence of the association between the FKBP5 rs1360780 T allele, CT, and decreased FKBP5 methylation in intron 7. Allele-specific FKBP5 demethylation found in patients could shed a light on altered HPA axis activity in a subgroup of patients related to stress-induced psychosis. FKBP5 methylation and potential protective mechanisms in unaffected siblings after trauma exposure require further investigation.


Assuntos
Experiências Adversas da Infância , Metilação de DNA/genética , Genótipo , Transtornos Psicóticos/genética , Irmãos , Proteínas de Ligação a Tacrolimo/genética , Adulto , Estudos de Casos e Controles , Feminino , Saúde , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico/genética
14.
Neuroscience ; 451: 174-183, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33039525

RESUMO

Mitochondria play a significant role in pathogenesis of clinical depression and their function can be impaired by inflammation and alterations in hypothalamic-pituitary-adrenal axis. Sexual context is also a relevant factor in the incidence of mood disorders, and could have a strong influence during an immune challenge. Therefore, in this study we investigated whether the effects of seven-day lipopolysaccharide (LPS) treatment on glucocorticoid receptor (GR) could be associated with apoptosis and alterations in energy metabolism in hippocampus of female and male Wistar rats with depressive-like behavior. To that end, we measured the mitochondrial levels of GR and its phosphoisoforms pGR232 and pGR246 in hippocampus of female and male rats, as well as the mRNA levels of two GR-regulated mitochondrial genes, cyclooxygenase -1 and -3 (COX-1 and -3). We also measured alterations in the extrinsic and intrinsic apoptotic pathways in mitochondria and cytosol of hippocampus of these animals, and the levels of cleaved cytosolic poly [ADP-ribose] polymerase-1 (PARP-1) protein. We discovered that even though LPS treatment induced behavioral alterations and affected corticosterone levels and apoptosis in a similar manner in both sexes, it affected mitochondrial GR differently in males and females. Namely, the treatment decreased levels of mitochondrial GR and pGR232/pGR246 ratio only in females, and these alterations were followed by decreased mRNA levels of COX-1 and COX-3 only in this sex. The alterations in COX-1 and COX-3 mRNA levels could indicate impaired oxidative metabolism and diminished mitochondrial function in hippocampus of this sex.


Assuntos
Depressão , Sistema Hipotálamo-Hipofisário , Lipopolissacarídeos , Mitocôndrias , Fatores Sexuais , Animais , Corticosterona/metabolismo , Feminino , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Lipopolissacarídeos/metabolismo , Masculino , Mitocôndrias/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Ratos Wistar , Receptores de Glucocorticoides/metabolismo
15.
Molecules ; 25(17)2020 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-32842509

RESUMO

The SARS-CoV-2 outbreak caused an unprecedented global public health threat, having a high transmission rate with currently no drugs or vaccines approved. An alternative powerful additional approach to counteract COVID-19 is in silico drug repurposing. The SARS-CoV-2 main protease is essential for viral replication and an attractive drug target. In this study, we used the virtual screening protocol with both long-range and short-range interactions to select candidate SARS-CoV-2 main protease inhibitors. First, the Informational spectrum method applied for small molecules was used for searching the Drugbank database and further followed by molecular docking. After in silico screening of drug space, we identified 57 drugs as potential SARS-CoV-2 main protease inhibitors that we propose for further experimental testing.


Assuntos
Antivirais/química , Betacoronavirus/efeitos dos fármacos , Cisteína Endopeptidases/química , Mezlocilina/química , Inibidores de Proteases/química , Raltegravir Potássico/química , Proteínas não Estruturais Virais/química , Sítio Alostérico , Antivirais/farmacologia , Betacoronavirus/enzimologia , Betacoronavirus/patogenicidade , COVID-19 , Domínio Catalítico , Proteases 3C de Coronavírus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Reposicionamento de Medicamentos , Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Mezlocilina/farmacologia , Simulação de Acoplamento Molecular , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/enzimologia , Pneumonia Viral/virologia , Inibidores de Proteases/farmacologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Raltegravir Potássico/farmacologia , SARS-CoV-2 , Termodinâmica , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
16.
Brain Res Bull ; 150: 317-327, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31251961

RESUMO

Mitochondrial dysfunction can result from the interplay between elevated inflammatory markers and alterations in hypothalamic-pituitary-adrenal (HPA) axis, and can contribute to pathogenesis of major depression. Therefore, in this study we investigated whether the effects of lipopolysaccharide (LPS) on glucocorticoid receptor (GR) could be associated with alterations in mitochondrial apoptotic signaling in the prefrontal cortex of male and female Wistar rats with depressive-like behavior. To that end, we measured LPS-induced alterations in the extrinsic and intrinsic apoptotic pathways in mitochondria and cytosol of PFC of female and male rats, as well as the levels of cleaved cytosolic PARP-1. We also measured the mitochondrial levels of GR and its phosphoisoforms pGR232 and pGR246, as well as the mRNA levels of two GR-regulated mitochondrial genes, COX-1 and COX-3. We discovered that although seven-day LPS treatment evoked depressive-like behavior and induced apoptosis in the PFC of both sexes, it affected apoptotic cascades in both sexes differently. In females the treatment initiated both intrinsic and extrinsic apoptotic cascade, while in males only intrinsic cascade was engaged. Alterations in intrinsic apoptotic pathway were more associated with GR alterations in males, where LPS treatment decreased levels of mitochondrial GR and increased pGR232/pGR246 ratio. Alterations in mitochondrial GR could be associated with changes in expression of genes involved in oxidative metabolism in the PFC of this sex, and could, in combination with elevated levels of BCL-2 and decreased levels of BAX detected in this cell fraction, mitigate the detrimental effect of LPS on mitochondria in male PFC.


Assuntos
Depressão/metabolismo , Mitocôndrias/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Apoptose/efeitos dos fármacos , Corticosterona/metabolismo , Transtorno Depressivo Maior/metabolismo , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Fosforilação , Sistema Hipófise-Suprarrenal/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-30580022

RESUMO

Childhood trauma (CT) increases the risk for psychopathology through disturbed acquisition and extinction of fear. The effects of CT are mediated by abnormalities of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor (GR). Since, the alterations in GRα translational isoforms have been documented in psychiatric disorders we sought to: 1) explore whether multiple GRα isoforms in the human peripheral blood mononuclear cells of two independent cohorts (whole cell n = 40; and nuclear extracts n = 43, adult subjects) mediate the effect of CT on negative affectivity (NA) measured by Depression, Anxiety and Stress Scales (DASS), and 2) examine their role/function during fear extinction in the animal model. In multiple regression analysis, CT, nuclear 40-kDa GRα, their interactions and FKBP5 explained 22%-35% of variance in DASS scores. Structural equation modeling showed that CT had a significant direct effect on 40-kDa and DASS in both cohorts, and on the nuclear 25-kDa GRα. The association between 40-kDa and total DASS was significantly mediated by nuclear FKBP5, whereas on DASS anxiety, over FKBP5 in both cohorts and nuclear full length GRα. Nuclear 40-kDa GRα and its interaction with CT had a significant direct effect on DASS anxiety. In mice, the successful extinction learning was followed by nuclear translocation of 40-kDa GRα and induction of BDNF exon IV expression. Our data revealed that the association between CT and adult NA in non-clinical subjects is mediated by the GRα translational isoforms, in particular 40-kDa GRα, and emphasized its role in fear extinction and neural plasticity.


Assuntos
Adultos Sobreviventes de Eventos Adversos na Infância/psicologia , Afeto/fisiologia , Receptores de Glucocorticoides/sangue , Adulto , Animais , Núcleo Celular/metabolismo , Estudos de Coortes , Condicionamento Psicológico , Modelos Animais de Doenças , Extinção Psicológica/fisiologia , Medo/fisiologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Projetos Piloto , Biossíntese de Proteínas , Isoformas de Proteínas , Distribuição Aleatória
18.
Behav Brain Res ; 359: 550-559, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30296532

RESUMO

Recent reports have demonstrated that lipopolysaccharide (LPS)-induced depressive-like behaviour is mediated via NMDA receptor. In this study, we further investigated the role of GluN2 A subunit of NMDA receptor in synaptic processes in the prefrontal cortex (PFC) and hippocampus of GluN2 A knockout (KO) mice in LPS-induced depressive-like behavior. Our data suggest that LPS-treated mice, lacking GluN2 A subunit, did not exhibit depressive-like behaviour. This was accompanied by unaltered levels of IL-6 and significant changes in neuroplasticity markers and glutamate receptor subunits composition in PFC and hippocampus. In particular, an immune challenge in GluN2 A KO mice resulted in unchanged PSA-NCAM levels and proBDNF increase in both brain structures as well as in increase in BDNF levels in hippocampus. Furthermore, the absence of GluN2 A resulted in increased levels of all NCAM isoforms in PFC upon LPS which was followed with a decrease in GluN1 and GluN2B subunits. The levels of AMPA receptor subunits (GluA1, GluA3, and GluA4) in the hippocampus of GluN2 A mice were unaltered upon the treatment and abundantly present in the PFC of KO mice. These results indicate that the GluN2 A subunit is critical in neuroinflammation-related depression, that its absence abolishes LPS-induced depressive phenotype, sustains PSA-NCAM levels, increases proBDNF signalling in the PFC and hippocampus and potentiates synaptic stabilization through NCAM in the PFC upon an immune challenge.


Assuntos
Depressão/imunologia , Inflamação/metabolismo , Inflamação/psicologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/etiologia , Depressão/patologia , Modelos Animais de Doenças , Resistência à Doença/fisiologia , Hipocampo/imunologia , Hipocampo/patologia , Inflamação/patologia , Interleucina-6/metabolismo , Lipopolissacarídeos , Masculino , Camundongos Knockout , Atividade Motora/fisiologia , Moléculas de Adesão de Célula Nervosa/metabolismo , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/imunologia , Córtex Pré-Frontal/patologia , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética
19.
Curr Neuropharmacol ; 16(2): 176-209, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28847294

RESUMO

BACKGROUND: Mounting evidence demonstrates enhanced systemic levels of inflammatory mediators in depression, indicating that inflammation may play a role in the etiology and course of mood disorders. Indeed, proinflammatory cytokines induce a behavioral state of conservation- withdrawal resembling human depression, characterized by negative mood, fatigue, anhedonia, psychomotor retardation, loss of appetite, and cognitive deficits. Neuroinflammation also contributes to non-responsiveness to current antidepressant (AD) therapies. Namely, response to conventional AD medications is associated with a decrease in inflammatory biomarkers, whereas resistance to treatment is accompanied by increased inflammation. METHODS: In this review, we will discuss the utility and shortcomings of pharmacologic AD treatment strategies focused on inflammatory pathways, applied alone or as an adjuvant component to current AD therapies. RESULTS: Mechanisms of cytokine actions on behavior involve activation of inflammatory pathways in the brain, resulting in changes of neurotransmitter metabolism, neuroendocrine function, and neuronal plasticity. Selective serotonin reuptake inhibitors exhibit the most beneficial effects in restraining the inflammation markers in depression. Different anti-inflammatory agents exhibit AD effects via modulating neurotransmitter systems, neuroplasticity markers and glucocorticoid receptor signaling. Anti-inflammatory add-on therapy in depression highlights such treatment as a candidate for enhancement strategy in patients with moderate-to-severe depression. CONCLUSION: The interactions between the immune system and CNS are not only involved in shaping behavior, but also in responding to therapeutics. Even though, substantial evidence from animal and human research support a beneficial effect of anti-inflammatory add-on therapy in depression, further research with special attention on safety, particularly during prolonged periods of antiinflammatory co-treatments, is required.


Assuntos
Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Depressão/etiologia , Inflamação/complicações , Animais , Anti-Inflamatórios/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Citocininas/metabolismo , Depressão/patologia , Humanos , Inflamação/tratamento farmacológico
20.
J Psychopharmacol ; 31(9): 1234-1249, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28857645

RESUMO

Inflammation plays a critical role in pathogenesis of depression and can affect the hypothalamic-pituitary-adrenal axis activity. Accordingly, in this study we investigated the role of hippocampal glucocorticoid receptor in mediating the effects of inflammation on behaviour of female and male Wistar rats. We studied the effects of lipopolysaccharide on the levels of glucocorticoid receptors and its co-chaperones FK506 binding protein 52 and FK506 binding protein 51, the levels of glucocorticoid receptor phospho-isoforms, pGR-232 and pGR-246, and glucocorticoid receptor up-stream kinases. In order to assess transcriptional activity of glucocorticoid receptor, we measured mRNA levels of several glucocorticoid receptor-regulated genes. We demonstrated that lipopolysaccharide induced depressive-like behaviour and elevated serum corticosterone in both sexes. However, it affected glucocorticoid receptor signalling in the nucleus of females and males differently - in females it elevated levels of glucocorticoid receptors, pGR-246 and FK506 binding protein 52, while in males it decreased levels of glucocorticoid receptor, both co-chaperons and pGR-246. Alterations in pGR-246 were associated with alterations of c-Jun N-terminal kinases. Altered nuclear levels of total glucocorticoid receptors and pGR-246 were accompanied by sex-specific reduction in brain-derived neurotrophic factor and cyclooxygenase-2 mRNA and sex-unspecific reduction in the expression of p11 and glucocorticoid receptor genes. These alterations may ultimately affect different glucocorticoid receptor -associated processes involved in depressive-like behaviour in males and females.


Assuntos
Depressão/tratamento farmacológico , Transtorno Depressivo/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Fosforilação/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corticosterona/metabolismo , Depressão/metabolismo , Transtorno Depressivo/metabolismo , Feminino , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA