Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Biomed Res Int ; 2018: 6583852, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29888271

RESUMO

In Human Papillomaviruses- (HPV-) associated carcinogenesis, continuous expression of the E6 oncoprotein supports its value as a potential target for the development of diagnostics and therapeutics for HPV cancer. We previously reported that the I7 single-chain antibody fragment (scFv) specific for HPV16 E6, expressed as an intrabody by retroviral system, could inhibit significantly the growth of cervical cancer cells in vitro and was even able to reduce tumor development in experimental HPV-related cancer models. Nevertheless, for the development of therapeutic tools to be employed in humans, it is important to achieve maximum safety guarantee, which can be provided by the protein format. In the current study, two anti-16E6 scFvs derived from I7 were expressed in E. coli and purified in soluble form by affinity chromatography. Specificity, sensitivity and stability in physiologic environment of the purified scFvs were demonstrated by binding studies using recombinant 16E6 as an antigen. The scFvs functionality was confirmed by immunofluorescence in cervical cancer cells, where the scFvs were able to recognize the nuclear E6. Furthermore, an antiproliferative activity of the scFvI7nuc delivered in protein format to HPV16-positive cell lines was observed. Our results demonstrate that functional anti-16E6 scFvs can be produced in E. coli, suggesting that such purified antibodies could be used in the diagnosis and treatment of HPV-induced malignancies.


Assuntos
Proteínas Oncogênicas Virais/imunologia , Infecções por Papillomavirus/prevenção & controle , Proteínas Repressoras/imunologia , Anticorpos de Cadeia Única/imunologia , Neoplasias do Colo do Útero/prevenção & controle , Carcinogênese/genética , Carcinogênese/imunologia , Linhagem Celular Tumoral , Feminino , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 16/patogenicidade , Humanos , Proteínas Oncogênicas Virais/antagonistas & inibidores , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Proteínas Repressoras/antagonistas & inibidores , Anticorpos de Cadeia Única/isolamento & purificação , Anticorpos de Cadeia Única/uso terapêutico , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/virologia
2.
Curr Med Chem ; 19(4): 461-74, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22204349

RESUMO

MicroRNAs (miRNAs) are small (typically 22 nucleotides) non-coding, endogenous, single-stranded RNAs. MiRNA genes are evolutionarily conserved and are located within the introns or exons of protein-coding genes, as well as in intergenic areas. Before the discovery of miRNAs, it had been known that a large part of the genome is not translated into proteins. This so called "junk" DNA was thought to be evolution debris with no function. Recently, the explosive research in this area has established miRNAs as powerful regulators of gene expression. While only about 1,424 human miRNA sequences have been identified so far, genomic computational analysis indicates that as many as 50,000 miRNAs may exist in the human genome, and each may have multiple targets based on similar sequences in the 3'-UTR of mRNA. MiRNAs have been implicated in different areas such as the immune response, neural development, DNA repair, apoptosis, oxidative stress response and others and it is impressive the list of diseases which have recently been found to be associated with abnormal miRNA expression. Here, we focus our attention on the importance of cancer regulator miRNAs. They are divided into oncomiRs and anti-oncomiRs that negatively regulate tumor suppressor genes and oncogenes, respectively. Importantly, the association of miRNAs with cancer has prompted additional functional classification of these short RNAs and their potential relevance in cancer diagnosis, prognosis and treatment.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , Neoplasias/diagnóstico , Neoplasias/terapia , Animais , Humanos , MicroRNAs/metabolismo , Neoplasias/genética , Prognóstico
3.
Curr Med Chem ; 16(3): 287-300, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19149578

RESUMO

Anticancer drug-induced tumor suppression may involve mechanisms of protection against neoplastic transformation that are normally latent in mammalian cells and consist in a genetic program implemented during anti-tumoral defense. This defense program results in the self elimination of cells harboring potentially dangerous mutations by triggering cell death through apoptosis and/or autophagy or in the execution of a program that leads to a permanent growth arrest known as senescence. These responses are considered crucial tumor suppressive mechanisms and their study appears to be essential to develop therapeutical procedures based on the enhancement of the different responses. This review summarizes fundamental knowledge on the underlying mechanisms able to limit excessive or aberrant cellular proliferation and on the prognostic value of both apoptosis and senescence detection. In addition, interesting evidence showing that different drugs induce senescence or cell death depending on the genetic features of the tumor cells as well as on the integrity of the relative pathways is reported.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Transdução de Sinais , Antineoplásicos/química , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Telômero/efeitos dos fármacos , Resultado do Tratamento
4.
Int J Immunopathol Pharmacol ; 22(4): 967-78, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20074460

RESUMO

This study reports the immunomodulatory activity on human monocyte derived dendritic cells (MDDCs) of a vaccine preparation shown to be effective against an HPV16-related tumour in an animal model. The vaccine is composed of extract from Nicotiana benthamiana leaves containing HPV16 E7 protein expressed by a potato virus X-derived vector (NbPVX-E7). The effect of the extract was evaluated on MDDC differentiation and maturation by monitoring the phenotypic expression of specific markers. The results show that NbPVX-E7 does not induce monocyte differentiation to dendritic cells, but does induce MDDC maturation. Plant extract does not influence MDDC-uptake of E7-FITC while it significantly improves the Ovalbumin-FITC uptake, considered as a model antigen. Importantly, NbPVX-E7-pulsed MDDCs/PBMCs are able to prime human blood-derived lymphocytes from healthy individuals to induce HPV16 E7-specific cytotoxic activity. This is a propaedeutic study for a possible use of E7-containing plant extract in human immunotherapy of HPV-related lesions.


Assuntos
Adjuvantes Imunológicos/farmacologia , Células Dendríticas/imunologia , Linfócitos/imunologia , Nicotiana/metabolismo , Proteínas Oncogênicas Virais/imunologia , Vacinas contra Papillomavirus/imunologia , Extratos Vegetais/imunologia , Plantas Geneticamente Modificadas , Adjuvantes Imunológicos/isolamento & purificação , Apresentação de Antígeno , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Técnicas de Cocultura , Citotoxicidade Imunológica , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Relação Dose-Resposta a Droga , Vetores Genéticos , Humanos , Ativação Linfocitária , Linfócitos/efeitos dos fármacos , Masculino , Proteínas Oncogênicas Virais/biossíntese , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/isolamento & purificação , Ovalbumina/imunologia , Ovalbumina/metabolismo , Proteínas E7 de Papillomavirus , Vacinas contra Papillomavirus/biossíntese , Vacinas contra Papillomavirus/genética , Vacinas contra Papillomavirus/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Potexvirus/genética , Proteínas Recombinantes/imunologia , Fatores de Tempo , Nicotiana/genética
5.
Curr Med Chem ; 14(6): 667-79, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17346154

RESUMO

Interferon (IFN) was the first cytokine produced by recombinant DNA technology used in wide-spread clinical treatment of infectious diseases as well as malignancies. The IFN clinical potential was clearly realized from the outset. However, IFN represents one of the most controversial drugs of our time, as remarkable cycles of promise and disappointment have affected its development and use. Considerable evidence regarding anti-tumor activities of IFNs has been reported. In this paper we focus on molecular bases of the IFN system that may relate to its antitumor activities. Many of the numerous genes transcriptionally activated by IFNs have been shown to encode proteins that activate immune recognition of tumor cells, directly or indirectly exert tumor suppressor activity and/or control tumor cell cycle and programmed cell death. In addition, a physiological relevant function for endogenous type I IFN in cancer immunoediting process and a new way to IFN clinical use based on gene therapy or vaccine-like approaches have recently been suggested. The identification of selected tissue-specific and/or tumor-specific target pathways as well as of different type I IFN tumor escape and resistance mechanisms may provide novel approaches in the search for new IFN-based therapeutic strategies to circumvent cancer disease or improve clinical outcome. Promising IFN treatment has been recently defined by using novel pharmaceutical preparations with a more favourable pharmacokinetic response, also in combination with other bioreagents or other modalities of therapy. Translational research, linking both basic and clinical research, will lead to a new rationale for the use of IFN in cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Terapia Biológica , Interferon Tipo I/uso terapêutico , Neoplasias/terapia , Animais , Humanos , Neoplasias/genética , Neoplasias/fisiopatologia , Proteínas Recombinantes
6.
Curr Pharm Des ; 11(7): 933-44, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15777244

RESUMO

The powerful inducer of apoptosis Apo2L/TNF-related apoptosis-inducing ligand (TRAIL) has generated exciting promise as a potential tumour specific cancer therapeutic agent, since it selectively induces apoptosis in transformed versus normal cells. Interferons (IFNs) are important modulators of TRAIL expression, thus the ligand appears to play an important role in surveillance against viral infection and malignant transformation. In the light of the emerging importance of TRAIL in cancer therapy, we will discuss the molecular basis of the cooperation of TRAIL and IFNs or chemotherapeutic drugs. In particular, we will focus on the data known to date concerning the biochemical pathways leading to TRAIL-induced apoptosis in specific cancer cells and warranting further work to enable the investigation in cancer patients.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Glicoproteínas de Membrana/farmacologia , Glicoproteínas de Membrana/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/uso terapêutico , Animais , Proteínas Reguladoras de Apoptose , Humanos , Receptor Cross-Talk/efeitos dos fármacos , Receptores do Fator de Necrose Tumoral/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF
7.
Blood ; 98(9): 2752-61, 2001 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-11675348

RESUMO

Monocytes/macrophages play a predominant role in the immunologic network by secreting and reacting to a wide range of soluble factors. Human immunodeficiency virus (HIV) infection leads to deep immunologic dysfunctions, also as a consequence of alterations in the pattern of cytokine release. Recent studies on in vivo models demonstrated that the expression of HIV Nef alone mimics many pathogenetic effects of HIV infection. In particular, Nef expression in monocytes/macrophages has been correlated with remarkable modifications in the pattern of secreted soluble factors, suggesting that the interaction of Nef with monocytes/macrophages plays a role in the pathogenesis of acquired immunodeficiency syndrome (AIDS). This study sought to define possible alterations in intracellular signaling induced by Nef in monocytes/macrophages. Results demonstrate that HIV-1 Nef specifically activates both alpha and beta isoforms of the signal transducer and activator of transcription 1 (STAT1). This was observed both by infecting human monocyte-derived macrophages (MDMs) with HIV-1 deletion mutants, and by exploiting the ability of MDMs to internalize soluble, recombinant Nef protein (rNef). STAT1-alpha activation occurs on phosphorylation of both C-terminal Tyr701 and Ser727 and leads to a strong binding activity. Nef-dependent STAT1 activation is followed by increased expression of both STAT1 and interferon regulatory factor-1, a transcription factor transcriptionally regulated by STAT1 activation. It was also established that Nef-induced STAT1- alpha/beta activation occurs through the secretion of soluble factors. Taken together, the results indicate that HIV-1 Nef could interfere with STAT1-governed intracellular signaling in human monocytes/macrophages.


Assuntos
Citocinas/metabolismo , Proteínas de Ligação a DNA/efeitos dos fármacos , Produtos do Gene nef/farmacologia , Macrófagos/efeitos dos fármacos , Transativadores/efeitos dos fármacos , Síndrome da Imunodeficiência Adquirida/sangue , Síndrome da Imunodeficiência Adquirida/etiologia , Adulto , Citocinas/efeitos dos fármacos , Citocinas/farmacologia , Proteínas de Ligação a DNA/metabolismo , Produtos do Gene nef/genética , Produtos do Gene nef/fisiologia , HIV-1/química , HIV-1/genética , Humanos , Fator Regulador 1 de Interferon , Macrófagos/metabolismo , Macrófagos/virologia , Masculino , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/virologia , Fosfoproteínas/efeitos dos fármacos , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Isoformas de Proteínas/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Fator de Transcrição STAT1 , Deleção de Sequência , Transdução de Sinais/efeitos dos fármacos , Transativadores/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana
8.
Oncogene ; 19(44): 5041-53, 2000 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-11042692

RESUMO

Type I Interferon (IFN) and all-trans retinoic acid (RA) inhibit cell proliferation of squamous carcinoma cell lines (SCC). Examinations of growth-affected cell populations show that SCC lines ME-180 and SiHa treated with IFN-beta undergo a specific slower progression through the S phase that seems to trigger cellular death. In combination treatment RA potentiates IFN-beta effect in SCC ME-180 but not in SiHa cell line, partially resistant to RA antiproliferative action. RA added as single agent affects cell proliferation differently by inducing a slight G1 accumulation. The IFN-beta-induced S phase lengthening parallels the increased expression of PML, a nuclear phosphoprotein specifically up-regulated at transcriptional level by IFN, whose overexpression induces cell growth inhibition and tumor suppression. We report that PML up-regulation may account for the alteration of cell cycle progression induced by IFN-beta in SCC by infecting cells with PML-PINCO recombinant retrovirus carrying the PML-3 cDNA under the control of the 5' LTR. In fact PML overexpression reproduces the IFN-beta-induced S phase lengthening. These findings provide important insight into the mechanism of tumor suppressing function of PML and could allow PML to be included in the pathways responsible for IFN-induced cell growth suppression.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/patologia , Interferon Tipo I/farmacologia , Proteínas de Neoplasias/biossíntese , Proteínas Nucleares , Fase S/efeitos dos fármacos , Fatores de Transcrição/biossíntese , Neoplasias do Colo do Útero/patologia , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Divisão Celular/efeitos dos fármacos , DNA de Neoplasias/biossíntese , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores do Crescimento/administração & dosagem , Inibidores do Crescimento/farmacologia , Humanos , Interferon Tipo I/administração & dosagem , Proteínas de Neoplasias/genética , Proteína da Leucemia Promielocítica , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Proteínas Recombinantes , Fatores de Transcrição/genética , Tretinoína/administração & dosagem , Tretinoína/farmacologia , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor , Regulação para Cima/efeitos dos fármacos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo
9.
Cell Growth Differ ; 10(4): 263-70, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10319996

RESUMO

Interferon regulatory factor 1 (IRF-1) transcription factor binds to DNA sequence elements found in the promoters of type I IFN and IFN-inducible genes. Transient up-regulation of the IRF-1 gene by virus and IFN treatment causes the consequent induction of many IFN-inducible genes involved in cell growth control and apoptosis. We reported recently that IFN-alpha and all-trans retinoic Acid (RA) inhibit the cell proliferation of squamous carcinoma cell line ME-180 by inducing apoptotic cell death. IRF-1 expression correlates with the IFN-alpha-induced apoptosis phenomenon and, surprisingly, with the RA-induced apoptosis phenomenon. To study how these two different ligands cross-talk in the regulation of cellular antitumor responses, the signalling pathways involved in IRF-1 induction were analyzed in RA and/or IFN-alpha-treated ME-180 cells. We provide evidence indicating that RA-induced IRF-1 gene expression is independent of the STAT-1 activation pathway, despite the presence of the IFN-gamma activated sequence element in the gene promoter, but involves nuclear factor-kappaB activation. Thus, here we first describe the activation of nuclear factor-kappaB by both IFN-alpha and RA in the ME-180 cell line. The induced IRF-1 protein is successively able to bind the IFN-stimulated responsive element in the promoter of the target gene 2',5'-oligoadenylate synthetase.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Fosfoproteínas/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Transativadores/fisiologia , Tretinoína/fisiologia , Primers do DNA , Dactinomicina/farmacologia , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica , Humanos , Immunoblotting , Fator Regulador 1 de Interferon , Interferon alfa-2 , Interferon-alfa/farmacologia , NF-kappa B/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Recombinantes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT1 , Fatores de Tempo , Transfecção , Tretinoína/farmacologia , Células Tumorais Cultivadas
10.
Int J Cancer ; 76(4): 531-40, 1998 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-9590130

RESUMO

Several lines of evidence have demonstrated that IFNs could be relevant in the treatment of certain neoplastic diseases such as carcinomas. In particular, IFN-alpha, in addition to the anti-proliferative and cytostatic effects, was demonstrated to be capable of inducing cell death by apoptosis both in vivo and in vitro. Numerous protocols have also been proposed which consider the association of IFN-alpha with other drugs. Among these are retinoids, a class of compounds capable of inducing inhibition of cell growth and differentiation. We address the question here by analyzing the role of cell adhesion in susceptibility to IFN-alpha, RA and their combination of a human cell line derived from a squamous carcinoma of the cervix, the Bcl-2-negative SiHa cell line. In this context, cytoskeleton components and several surface molecules playing a role in cell substrate and cell-to-cell relationships have been evaluated. We found that RA treatment is capable of improving stress fiber formation, decreasing cell detachment and increasing cell-adhesion capability. However, no variations in the ability to adhere to specific extracellular-matrix molecules were found in RA-treated cells. No quantitative changes were detected in integrins involved as receptors for extracellular matrix molecules (VLAI-VLA5) or in other cell-adhesion-associated molecules (e.g., CD44). By contrast, 2 important molecules involved in cell-adhesion processes appeared to be up-regulated by RA exposure: focal adhesion kinase and E-cadherin, involved in adhesion plaque formation and cell-to-cell contacts, respectively. Keeping in mind the importance of adhesion properties in the cell-growth pathway, our findings could be of interest in the study of carcinoma-cell proliferation and metastatic potential.


Assuntos
Carcinoma de Células Escamosas/patologia , Adesão Celular/efeitos dos fármacos , Interferon-alfa/farmacologia , Tretinoína/farmacologia , Neoplasias do Colo do Útero/patologia , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Divisão Celular/efeitos dos fármacos , Feminino , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Humanos , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células Tumorais Cultivadas
11.
Cell Growth Differ ; 8(1): 91-100, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8993838

RESUMO

Both retinoids and IFNs are known to inhibit proliferation of many normal and transformed cells and to have an in vivo antitumor effect against a variety of cancers, including squamous cell carcinoma. Because the combination of IFNs and all-trans retinoic acid (RA) could improve their antitumor effectiveness (depending on the histological origin and state of differentiation of the cells), we compared the activity of RA and/or IFN-alpha 2b with regard to the mechanism of growth inhibition of ME180 and SiHa cell lines, derived from squamous cervix carcinoma at different stages of differentiation. We reported previously that, in the ME180 cell line, the combined treatment significantly increased the growth inhibitory effect of the single agents. Here, we show that the SiHa cell line appears more sensitive to IFN-alpha 2b than the ME180 cell line, and resistant to RA, which does not significantly inhibit SiHa cell growth. Induction of apoptotic cell death clearly occurs and correlates with the inhibition of cell proliferation in both cell lines. It is interesting that the induction of the transcription factor IFN regulatory factor 1 correlates with the subsequent induction of apoptosis, whereas TGase I and II expression does not. In particular, TGase I and II appear differentially expressed in the ME180 and SiHa cell lines; i.e., TGase I is expressed in ME180 and specifically inhibited by RA, whereas TGase II is expressed in SiHa. It is interesting that both IFN-alpha and RA are able to increase TGase II expression and activity in this cell line.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Divisão Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP , Interferon-alfa/farmacologia , Fosfoproteínas/metabolismo , Transglutaminases/metabolismo , Tretinoína/farmacologia , Fragmentação do DNA , Proteínas de Ligação a DNA/genética , GTP Fosfo-Hidrolases/genética , Regulação da Expressão Gênica , Humanos , Fator Regulador 1 de Interferon , Interferon alfa-2 , Fosfoproteínas/genética , Proteína 2 Glutamina gama-Glutamiltransferase , Proteínas Recombinantes , Transglutaminases/genética , Células Tumorais Cultivadas
13.
J Virol ; 69(9): 5833-7, 1995 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-7637029

RESUMO

Treatment of murine Friend cells with a dose of the protein kinase inhibitor staurosporine, which is able to block the response of the cells to interferons, appears to inhibit phosphorylation of Jak proteins and, interestingly, to specifically reduce tyk2 and Jak1 expression and to increase Jak2 both in the presence and in the absence of interferons. Therefore, a potential role for phosphorylation events in the regulation of expression of the Jak family members is suggested.


Assuntos
Alcaloides/farmacologia , Expressão Gênica , Biossíntese de Proteínas , Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases/biossíntese , Proteínas Proto-Oncogênicas , Animais , Vírus da Leucemia Murina de Friend/efeitos dos fármacos , Vírus da Leucemia Murina de Friend/fisiologia , Expressão Gênica/efeitos dos fármacos , Interferon-alfa/farmacologia , Interferon gama/farmacologia , Janus Quinase 1 , Janus Quinase 2 , Leucemia Experimental , Camundongos , Fosforilação , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , Estaurosporina , TYK2 Quinase , Células Tumorais Cultivadas
14.
Cancer Res ; 55(14): 3158-64, 1995 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-7606736

RESUMO

The in vivo and in vitro antitumor effectiveness of IFNs is well documented. Their combination with differentiating agents, such as retinoic acid, has been demonstrated to be a promising therapy for patients with advanced squamous cell cancer of the skin and the cervix. However, the mechanisms that mediate these antitumor responses are not yet known. We studied the epidermoid cell line ME 180 derived from human cervical carcinoma to test its responsiveness to IFN-alpha-2b (INTRON A) and all-trans-retinoic acid (RA). Both agents have demonstrated ability to inhibit the growth of ME 180 cells in a dose- and time-dependent manner. The antiproliferative effect was further increased by the treatment with IFN-alpha-2b and RA combined. In accordance with this result, we found that the combination of the two agents has the effect of increasing the expression of the 2-5A synthetase gene, which is thought to play a key role in antigrowth responses to IFNs. At increased levels of 2-5A synthetase mRNA corresponds a significant increase in 2-5A synthetase activity. Although RA per se has no effect on the 2-5A synthetase expression, when it is combined with IFN-alpha-2b it appears to be able to potentiate the IFN-induced 2-5A synthetase expression. Moreover, the combination of IFN-alpha-2b and RA produces a similar effect also on the expression of the HLA-A2 gene, which has been shown to be induced in ME 180 cells both by IFN-alpha-2b and RA alone. In view of the possible mechanisms of action of the two agents, it is interesting to note that their combination increases, although transiently, the expression of IRF1, which codes for a transcription factor that regulates IFN gene expression and is thought to be involved in the regulation of IFN-induced effects and in mediating cell death or apoptosis.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/terapia , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Carcinoma de Células Escamosas/patologia , Divisão Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Sinergismo Farmacológico , Feminino , Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Fator Regulador 1 de Interferon , Interferon alfa-2 , Interferon-alfa/administração & dosagem , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , RNA Mensageiro/genética , Receptores do Ácido Retinoico/genética , Proteínas Recombinantes , Estimulação Química , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Tretinoína/administração & dosagem , Células Tumorais Cultivadas/efeitos dos fármacos , Neoplasias do Colo do Útero/patologia
15.
J Interferon Cytokine Res ; 15(5): 395-402, 1995 May.
Artigo em Inglês | MEDLINE | ID: mdl-7544231

RESUMO

Hemin and other metalloporphyrins are known as very versatile compounds in nature, because they are able to carry out numerous functions in a free state or in association with specific proteins. When Friend murine erythroleukemia cells are treated with IFN-beta plus 100 microM hemin, the antiviral state is not observed, whereas the antiviral effect of IFN-gamma is unaffected by hemin treatment. This inhibitory effect of hemin is not restricted to erythroid cells. In fact, it is also observed in murine L929 and in human cell lines treated with IFN-beta. Neither trivalent iron in other forms nor hemin analogs (such as protoporphyrin IX or Sn(2+)-protoporphyrine IX) mimic this effect. Conversely, Co(3+)-protoporphyrin IX was as effective as hemin. At the transcriptional level, results obtained by run-on assays on nuclei from IFN-treated cells indicate that hemin does not completely inhibit IFN-beta induction of 2-5A synthetase gene(s) at 6 h of treatment but abolishes it at 24 h. In addition, hemin is able to inhibit the accumulation of IFN-induced 2-5A synthetase mRNAs. Experiments carried out to investigate the hemin effect on the early steps of the IFN signaling pathway indicate that hemin interferes with the ability of type I IFN to bind to its receptor, probably by a direct action on the IFN molecule.


Assuntos
Antivirais/antagonistas & inibidores , Hemina/farmacologia , Interferon beta/antagonistas & inibidores , Animais , Linhagem Celular , Vírus da Encefalomiocardite/efeitos dos fármacos , Compostos Férricos/farmacologia , Hemina/análogos & derivados , Humanos , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/metabolismo , Interferon beta/genética , Interferon beta/farmacologia , Interferon gama/farmacologia , Camundongos , Protoporfirinas/farmacologia , Compostos de Amônio Quaternário/farmacologia , RNA/biossíntese , Receptores de Interferon/antagonistas & inibidores , Receptores de Interferon/metabolismo , Proteínas Recombinantes , Transcrição Gênica , Células Tumorais Cultivadas , Vírus da Estomatite Vesicular Indiana/efeitos dos fármacos
16.
J Biol Regul Homeost Agents ; 9(1): 7-14, 1995.
Artigo em Inglês | MEDLINE | ID: mdl-8553907

RESUMO

Interferons (IFNs) are able to induce an increased transcription of several genes, which can occur within minutes of the binding of IFNs to their receptors. The specific induced transcription is mediated by the interaction of specific transcription factors with regulatory DNA sequences that lie upstream the promoters of IFN induced genes. Phosphorylation of IFN-specific transcription factors is required for activation of transcription. We have studied the antiviral effect and the induction of gene expression by IFN-alpha in Friend Leukemia cells (FLC) in the presence of a series of inhibitors of known kinases. Protein kinase C (PKC)-specific inhibitors, i.e. calphostin C and bisindolylmaleimide, failed to influence the IFN-induced gene expression and the antiviral state. Likewise, little or no effect was found using inhibitors such as H7 or K252a. Chronic exposure of FLC to phorbol ester, that causes down regulation of PKC (the effectiveness of TPA treatment was proven by PKC enzymatic assay), has no effect on IFN-alpha action. In addition, treatment of FLC with staurosporine prevented the induction of IFN-stimulated genes and the establishment of the antiviral state only when this drug was used at high dosage (500 nM). This result indicates that, also in FLC, activation of PKC is not involved in the transcriptional response of the cells to IFN-alpha treatment. The non receptor tyrosine kinases of the JAK family that take part in the IFNs-specific transduction pathways could be the target of the staurosporine specific inhibition of the IFN-alpha action.


Assuntos
Alcaloides/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interferon-alfa/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/fisiologia , 2',5'-Oligoadenilato Sintetase/genética , Antivirais/farmacologia , Vírus da Leucemia Murina de Friend , Interferon gama/farmacologia , Leucemia Eritroblástica Aguda/metabolismo , Estaurosporina , Acetato de Tetradecanoilforbol/farmacologia , Células Tumorais Cultivadas
17.
Nat Immun ; 12(6): 302-15, 1993.
Artigo em Inglês | MEDLINE | ID: mdl-7505668

RESUMO

Interferon (IFN) treatment of target cells can alter their susceptibility to natural resistance (NR), evidenced as in vitro 'natural killer' (NK) cell-mediated lysis or as in vivo rapid cell clearance. This paper reports the consequence of direct in vitro treatment with IFN-alpha/beta or IFN-gamma on acute rejection of leukemia cells in lethally irradiated hosts. This type of rejection has the characteristics of NR, although it is specific and genetically regulated. The data were obtained injecting intravenously FLC (FLC-745 and FLC-3C18 clones; H-2d) and EL-4 (H-2b) leukemia lines in lethally irradiated syngeneic mice and evaluating proliferation 4 days later by 125IUdR uptake. Overnight pretreatment with 100 U/ml of IFN-gamma protected tumor cells from NR-induced rejection in mice. This was evident by higher 125IUdR incorporation in spleens of mice inoculated with IFN-gamma pretreated leukemia cells, as compared to that detected in the spleens of hosts injected with untreated cells, in mice with high levels of NR, but not in hosts depressed for NR. Treatment with 1,000 U/ml of IFN-alpha/beta induced protection only of FLC-745 cells, injected in Poly I:C stimulated hosts. On the other hand, a lower 125IUdR uptake after IFN-alpha/beta incubation, as compared with control cells, was evidenced with FLC-745 and EL-4 lines inoculated in mice with normal or depressed NR. The IFN-induced alterations of leukemia cells to in vivo NR susceptibility were not associated with substantial changes of binding ability to NR effectors or of MHC-antigen expression.


Assuntos
Rejeição de Enxerto , Interferons/farmacologia , Leucemia Experimental/imunologia , Transplante Isogênico/imunologia , Animais , Feminino , Antígenos H-2/análise , Imunidade Inata/efeitos dos fármacos , Interferon-alfa/farmacologia , Interferon beta/farmacologia , Interferon gama/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Células Tumorais Cultivadas , Irradiação Corporal Total
18.
Mol Cell Biol ; 12(7): 3015-22, 1992 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-1620112

RESUMO

The mechanisms that regulate the expression of the H chain of the iron storage protein ferritin in Friend erythroleukemia cells (FLCs) after exposure to hemin (ferric protoporphyrin IX), protoporphyrin IX, and ferric ammonium citrate (FAC) have been investigated. Administration of hemin increases the steady-state level of ferritin mRNA about 10-fold and that of ferritin protein expression 20-fold. Experiments with the transcriptional inhibitor actinomycin D and transfection studies demonstrate that the increment in cytoplasmic mRNA content results from enhanced transcription of the ferritin H-chain gene and cannot be attributed to stabilization of preexisting mRNAs. In addition to transcriptional effects, translational regulation induces the recruitment of stored mRNAs into functional polyribosomes after hemin and FAC administration, resulting in a further increase in ferritin synthesis. Administration of protoporphyrin IX to FLCs produces divergent transcriptional and translational effects. It increases transcription but appears to suppress ferritin mRNA translation. FAC treatment increases the mRNA content slightly (about twofold), and the ferritin levels rise about fivefold over the control values. We conclude that in FLCs, hemin induces ferritin H-chain biosynthesis by multiple mechanisms: a transcriptional mechanism exerted also by protoporphyrin IX and a translational one, not displayed by protoporphyrin IX but shared with FAC.


Assuntos
Ferritinas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hemina/farmacologia , Leucemia Eritroblástica Aguda/metabolismo , Animais , Sequência de Bases , Desferroxamina/farmacologia , Compostos Férricos/farmacologia , Camundongos , Dados de Sequência Molecular , Polirribossomos/metabolismo , Biossíntese de Proteínas , Protoporfirinas/farmacologia , Compostos de Amônio Quaternário/farmacologia , RNA Mensageiro/metabolismo , Transcrição Gênica , Células Tumorais Cultivadas
19.
J Biol Regul Homeost Agents ; 6(1): 21-5, 1992.
Artigo em Inglês | MEDLINE | ID: mdl-1442172

RESUMO

The effect of interferons (IFNs) type I (alpha/beta) and type II (gamma) on the stimulation of H2-Dd (class I) and beta 2 microglobulin genes transcription was analysed in IFN-sensitive (w.t.) and IFN-resistant Friend erythroleukemia cells (FLC). Type I IFN enhances the expression of H2-Dd and beta 2 microglobulin genes in w.t. FLC but does not modulate the expression of these genes in clones resistant to IFN-alpha/beta. IFN type II treatment of w.t. and IFN-alpha/beta resistant cell lines results in an increased expression of H2-Dd and beta 2 microglobulin genes, while being ineffective in the cell clone resistant to both types of IFNs. In this cell system the effect(s) of IFN type II is in part mediated by the induction of IFN-beta. The results reported in the present paper suggest that the IFN-gamma is able per se to increase the expression of H2-Dd and beta 2 microglobulin genes; since a reduced but clearly evident stimulation of the expression of these genes was observed in the FLC clone totally resistant to type I IFN.


Assuntos
Regulação da Expressão Gênica , Genes MHC Classe I , Antígenos H-2/genética , Interferon Tipo I/farmacologia , Interferon gama/farmacologia , Microglobulina beta-2/genética , Animais , Northern Blotting , Vírus da Leucemia Murina de Friend , Leucemia Eritroblástica Aguda , Camundongos , Transcrição Gênica , Células Tumorais Cultivadas
20.
Blood ; 78(8): 2098-103, 1991 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-1912586

RESUMO

The effect of succinylacetone (SA), a highly specific inhibitor of ALA-dehydratase and heme synthesis, on hemoglobin (Hb) production, transferrin receptor (TfR), and ferritin expression was analyzed in differentiating Friend leukemia cells (FLC). This compound exerted a pronounced inhibitory effect not only on heme and Hb synthesis, but also on all the remaining above-mentioned parameters. In particular, SA induced: (1) a reduction of the level of alpha-globin mRNA; (2) a decreased number of exposed TfR molecules, without modification of their affinity for the ligand; (3) a reduced level of TfR RNA, without significant change of TfR gene transcription rate; and (4) a lower ferritin content. The addition of exogenous hemin to differentiating FLC exerted opposite effects, and particularly induced an increase of both the number of TfRs and ferritin content. These findings suggest that in erythroid cells optimal heme synthesis is required to coordinately sustain globin chains synthesis and TfR/ferritin production; thus, the intracellular heme level may represent a key regulatory factor in the Hb synthesis pathway.


Assuntos
Ferritinas/análise , Globinas/biossíntese , Heme/fisiologia , Leucemia Eritroblástica Aguda/patologia , Receptores da Transferrina/análise , Diferenciação Celular , Dimetil Sulfóxido/farmacologia , Heptanoatos/farmacologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA