Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Open Vet J ; 14(5): 1081-1097, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38938422

RESUMO

One zoonotic infectious animal disease is brucellosis. The bacteria that cause brucellosis belong to the genus Brucella. Numerous animal and human species are affected by brucellosis, with an estimated 500,000 human cases recorded annually worldwide. The occurrence of new areas of infection and the resurgence of infection in already infected areas indicate how dynamically brucellosis is distributed throughout different geographic regions. Bacteria originate from the blood and are found in the reticuloendothelial system, the liver, the spleen, and numerous other locations, including the joints, kidneys, heart, and genital tract. Diagnosis of this disease can be done by bacterial isolation, molecular tests, modified acid-fast stain, rose bengal test (RBT), milk ring test, complement fixation test, enzyme-linked immunosorbent assay, and serum agglutination test. The primary sign of a Brucella abortus infection is infertility, which can result in abortion and the birth of a frail fetus that may go on to infect other animals. In humans, the main symptoms are acute febrile illness, with or without localization signs, and chronic infection. Female cattle have a greater risk of contracting Brucella disease. Human populations at high risk of contracting brucellosis include those who care for cattle, veterinarians, slaughterhouse employees, and butchers. Antibiotic treatment of brucellosis is often unsuccessful due to the intracellular survival of Brucella and its adaptability in macrophages. A "one health" strategy is necessary to control illnesses like brucellosis.


Assuntos
Brucelose , Zoonoses , Brucelose/veterinária , Brucelose/epidemiologia , Brucelose/microbiologia , Brucelose/diagnóstico , Animais , Zoonoses/microbiologia , Humanos , Brucella/isolamento & purificação , Bovinos , Saúde Global
2.
Vet World ; 17(1): 216-225, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38406357

RESUMO

Background and Aim: There are numerous reports of subclinical mastitis cases in Blitar, which is consistent with the region's high milk production and dairy cattle population. Staphylococcus aureus, which is often the cause of mastitis cases, is widely known because of its multidrug-resistant properties and resistance to ß-lactam antibiotic class, especially the methicillin-resistant S. aureus (MRSA) strains. This study aimed to molecular detection and sequence analysis of the mecA gene in milk and farmer's hand swabs to show that dairy cattle are reservoirs of MRSA strains. Materials and Methods: A total of 113 milk samples and 39 farmers' hand swab samples were collected from a dairy farm for the isolation of S. aureus using Mannitol salt agar. The recovered isolates were further characterized using standard microbiological techniques. Isolates confirmed as S. aureus were tested for sensitivity to antibiotics. Oxacillin Resistance Screening Agar Base testing was used to confirm the presence of MRSA, whereas the mecA gene was detected by polymerase chain reaction and sequencing. Results: A total of 101 samples were confirmed to be S. aureus. There were 2 S. aureus isolates that were multidrug-resistant and 14 S. aureus isolates that were MRSA. The mecA gene was detected in 4/14 (28.6%) phenotypically identified MRSA isolates. Kinship analysis showed identical results between mecA from milk and farmers' hand swabs. No visible nucleotide variation was observed in the two mecA sequences of isolates from Blitar, East Java. Conclusion: The spread of MRSA is a serious problem because the risk of zoonotic transmission can occur not only to people who are close to livestock in the workplace, such as dairy farm workers but also to the wider community through the food chain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA