Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Reprod Toxicol ; 129: 108673, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39059775

RESUMO

Perinatal nicotine exposure via tobacco smoking results in increased proclivity to chronic lung disease (CLD); however, the underlying molecular mechanisms remain incompletely understood. We previously demonstrated that in addition to nicotine's direct effects on the developing lung, there are also adverse molecular alterations in bone marrow-derived mesenchymal stem cells (BMSCs), which are vital to lung injury repair. Whether perinatal nicotine exposure via electronic-cigarette (e-cig) vaping also adversely affects BMSCs is unknown. This is highly relevant due to marked increase in e-cig vaping including by pregnant women. Hypothesizing that perinatal nicotine exposure via e-cig vaping predisposes BMSCs to a pro-myofibroblastic phenotype, pregnant rat dams were exposed to fresh air (control), vehicle (e-cig without nicotine), or e-cig (e-cig with nicotine) daily during pregnancy and lactation. At postnatal day 21, offspring BMSCs were isolated and studied for cell proliferation, migration, wound healing response, and expression of key Wnt and PPARγ signaling intermediates (ß-catenin, LEF-1, PPARγ, ADRP and C/EBPα) and myogenic markers (fibronectin, αSMA, calponin) proteins using immunoblotting. Compared to controls, perinatal e-cig exposure resulted in significant decrease in BMSC proliferation, migration, and wound healing response. The expression of key Wnt signaling intermediates (ß-catenin, LEF-1) and myogenic markers (fibronectin, αSMA, calponin) increased significantly, while PPARγ signaling intermediates (PPARγ, ADRP, and C/EBPα) decreased significantly. Based on these data, we conclude that perinatally e-cig exposed BMSCs demonstrate pro-myofibroblastic phenotype and impaired injury-repair potential, indicating a potentially similar susceptibility to CLD following perinatal nicotine exposure via vaping as seen following parenteral perinatal nicotine exposure.


Assuntos
Células-Tronco Mesenquimais , Nicotina , Ratos Sprague-Dawley , Vaping , Animais , Nicotina/toxicidade , Feminino , Gravidez , Células-Tronco Mesenquimais/efeitos dos fármacos , Vaping/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal , Fenótipo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Proliferação de Células/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , Movimento Celular/efeitos dos fármacos , PPAR gama/metabolismo , Células Cultivadas , Agonistas Nicotínicos/toxicidade , Ratos , Células da Medula Óssea/efeitos dos fármacos , Masculino
2.
Behav Pharmacol ; 33(7): 442-451, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35942845

RESUMO

A newly deorphanized G protein-coupled receptor, GPR171, is found to be highly expressed within the periaqueductal gray, a pain-modulating region in the brain. Our recent research has shown that a GPR171 agonist increases morphine antinociception in male mice and opioid signaling in vitro . The objective of this study was to evaluate the effects of combination treatment in females as well as whether chronic treatment can be used without exacerbating morphine-induced tolerance and withdrawal in female and male mice. Our results demonstrate that activation of GPR171 with an agonist attenuates morphine tolerance in both female and male mice on the tail-flick test, but not the hotplate test. Importantly, the GPR171 agonist in combination with morphine does not exacerbate morphine-induced tolerance and withdrawal during long-term morphine treatment. Taken together, these data suggest that the GPR171 agonist may be combined with morphine to maintain antinociception while reducing the dose of morphine and therefore reducing side effects and abuse liability. The outcome of this study is clearly an important step toward understanding the functional interactions between opioid receptors and GPR171 and developing safer therapeutics for long-term pain management.


Assuntos
Analgésicos Opioides , Morfina , Analgésicos Opioides/farmacologia , Animais , Tolerância a Medicamentos/fisiologia , Feminino , Masculino , Camundongos , Morfina/farmacologia , Substância Cinzenta Periaquedutal/metabolismo , Receptores Acoplados a Proteínas G , Receptores Opioides , Receptores Opioides mu/agonistas
3.
Front Pain Res (Lausanne) ; 2: 695396, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295419

RESUMO

Chronic pain is a growing public health crisis that requires exigent and efficacious therapeutics. GPR171 is a promising therapeutic target that is widely expressed through the brain, including within the descending pain modulatory regions. Here, we explore the therapeutic potential of the GPR171 agonist, MS15203, in its ability to alleviate chronic pain in male and female mice using a once-daily systemic dose (10 mg/kg, i.p.) of MS15203 over the course of 5 days. We found that in our models of Complete Freund's Adjuvant (CFA)-induced inflammatory pain and chemotherapy-induced peripheral neuropathy (CIPN), MS15203 did not alleviate thermal hypersensitivity and allodynia, respectively, in female mice. On the other hand, MS15203 treatment decreased the duration of thermal hypersensitivity in CFA-treated male mice following 3 days of once-daily administration. MS15203 treatment also produced an improvement in allodynia in male mice, but not female mice, in neuropathic pain after 5 days of treatment. Gene expression of GPR171 and that of its endogenous ligand BigLEN, encoded by the gene PCSK1N, were unaltered within the periaqueductal gray (PAG) in both male and female mice following inflammatory and neuropathic pain. However, following neuropathic pain in male mice, the protein levels of GPR171 were decreased in the PAG. Treatment with MS15203 then rescued the protein levels of GPR171 in the PAG of these mice. Taken together, our results identify GPR171 as a GPCR that displays sexual dimorphism in alleviation of chronic pain. Further, our results suggest that GPR171 and MS15203 have demonstrable therapeutic potential in the treatment of chronic pain.

4.
J Pharmacol Exp Ther ; 371(1): 56-62, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31308196

RESUMO

ProSAAS is one of the most widely expressed proteins throughout the brain and was recently found to be upregulated in chronic fibromyalgia patients. BigLEN is a neuropeptide that is derived from ProSAAS and was recently discovered to be the endogenous ligand for the orphan G protein-coupled receptor GPR171. Although BigLEN-GPR171 has been found to play a role in feeding and anxiety behaviors, it has not yet been explored in pain and opioid modulation. The purpose of this study was to evaluate this novel neuropeptide-receptor system in opioid-induced antinociception. We found that GPR171 is expressed in GABAergic neurons within the periaqueductal gray, which is a key brain area involved in pain modulation and opioid functions. We also found that, although the GPR171 agonist and antagonist do not have nociceptive effects on their own, they oppositely regulate morphine-induced antinociception with the agonist enhancing and antagonist reducing antinociception. Lastly, we showed that the GPR171 antagonist or receptor knockdown decreases signaling by the mu-opioid receptor, but not the delta-opioid receptor. Taken together, these results suggest that antagonism of the GPR171 receptor reduces mu opioid receptor signaling and morphine-induced antinociception, whereas the GPR171 agonist enhances morphine antinociception, suggesting that GPR171 may be a novel target toward the development of pain therapeutics. SIGNIFICANCE STATEMENT: GPR171 is a recently deorphanized receptor that is expressed within the periaqueductal gray and can regulate mu opioid receptor signaling and antinociception. This research may contribute to the development of new therapeutics to treat pain.


Assuntos
Neuropeptídeos/farmacologia , Nociceptividade , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides mu/metabolismo , Transdução de Sinais , Analgésicos Opioides/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Substância Cinzenta Periaquedutal/citologia , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA