RESUMO
A series of nine novel ether phospholipid-dinitroaniline hybrids were synthesized in an effort to deliver more potent antiparasitic agents with improved safety profile compared to miltefosine. The compounds were evaluated for their in vitro antiparasitic activity against L. infantum, L.donovani, L. amazonensis, L. major and L. tropica promastigotes, L. infantum and L. donovani intracellular amastigotes, Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the oligomethylene spacer between the dinitroaniline moiety and the phosphate group, the length of the side chain substituent on the dinitroaniline and the choline or homocholine head group were found to affect both the activity and toxicity of the hybrids. The early ADMET profile of the derivatives did not reveal major liabilities. Hybrid 3, bearing an 11-carbon oligomethylene spacer, a butyl side chain and a choline head group, was the most potent analogue of the series. It exhibited a broad spectrum antiparasitic profile against the promastigotes of New and Old World Leishmania spp., against intracellular amastigotes of two L. infantum strains and L. donovani, against T. brucei and against T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes. The early toxicity studies revealed that hybrid 3 showed a safe toxicological profile while its cytotoxicity concentration (CC50) against THP-1 macrophages being >100 µM. Computational analysis of binding sites and docking indicated that the interaction of hybrid 3 with trypanosomatid α-tubulin may contribute to its mechanism of action. Furthermore, compound 3 was found to interfere with the cell cycle in T. cruzi epimastigotes, while ultrastructural studies using SEM and TEM in T. cruzi showed that compound 3 affects cellular processes that result in changes in the Golgi complex, the mitochondria and the parasite's plasma membrane. The snapshot pharmacokinetic studies showed low levels of 3 after 24 h following oral administration of 100 mg/Kg, while, its homocholine congener compound 9 presented a better pharmacokinetic profile.
Assuntos
Antiprotozoários , Doença de Chagas , Trypanosoma cruzi , Humanos , Antiparasitários/farmacologia , Antiprotozoários/farmacologia , Éteres Fosfolipídicos/uso terapêutico , Doença de Chagas/tratamento farmacológico , Colina/uso terapêuticoRESUMO
A library of seventeen novel ether phospholipid analogues, containing 5-membered heterocyclic rings (1,2,3-triazolyl, isoxazolyl, 1,3,4-oxadiazolyl and 1,2,4-oxadiazolyl) in the lipid portion were designed and synthesized aiming to identify optimised miltefosine analogues. The compounds were evaluated for their in vitro antiparasitic activity against Leishmania infantum and Leishmania donovani intracellular amastigotes, against Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the substituents of the heterocyclic ring (tail) and the oligomethylene spacer between the head group and the heterocyclic ring was found to affect the activity and toxicity of these compounds leading to a significantly improved understanding of their structure-activity relationships. The early ADMET profile of the new derivatives did not reveal major liabilities for the potent compounds. The 1,2,3-triazole derivative 27 substituted by a decyl tail, an undecyl spacer and a choline head group exhibited broad spectrum antiparasitic activity. It possessed low micromolar activity against the intracellular amastigotes of two L. infantum strains and T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes, while its cytotoxicity concentration (CC50) against THP-1 macrophages ranged between 50 and 100 µM. Altogether, our work paves the way for the development of improved ether phospholipid derivatives to control neglected tropical diseases.
Assuntos
Antiparasitários/síntese química , Antiparasitários/farmacologia , Doença de Chagas/tratamento farmacológico , Desenho de Fármacos , Leishmaniose/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Fosfolipídeos/farmacologia , Doença de Chagas/parasitologia , Química Click , Humanos , Leishmania/efeitos dos fármacos , Leishmaniose/parasitologia , Relação Estrutura-Atividade , Trypanosoma cruzi/efeitos dos fármacosRESUMO
Ascorbic acid in the presence of a catalytic amount of iodine reduces arsenic acid in methanol giving the arsenious acid bound to the 2-methyl hemi-ketal of dehydroascorbic acid, 5, in 1:1 and in a more stable 2:1 5/As(III) molar ratio. Removal of the As(III) and treating the 2-methyl hemi-ketal of dehydroascorbic acid with refluxing acetonitrile affords the pure, crystalline dehydroascorbic acid dimer in good yields. Ascorbic acid also binds to As(III) of H(3)AsO(3) in a 1:1 and 2:1 ascorbic acid/As(III) molar ratio. The 1:1 complex is not stable and by expulsion of H(3)AsO(3) is transformed to the more stable 2:1 complex. The data do not permit distinguishing the 2:1 complexes between [AsL(2)(H(2)O)](-)H(+) or AsL(LH)(H(2)O) where L is the bis deprotonated and LH is the mono deprotonated 2-methyl hemi-ketal of dehydroascorbic acid or ascorbic acid. The 2:1 ascorbic acid/As(III) complex is oxidized by dioxygen, in a solvent-dependent manner, to dehydroascorbic acid implying dioxygen activation by the bound As(III). With thiophenol the same complex gives quantitatively triphenyl trithioarsenite, As(SPh)(3).