Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Am Chem Soc ; 144(50): 23104-23114, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475650

RESUMO

G protein-coupled receptors (GPCRs) are the largest family of membrane receptors in humans. They mediate nearly all aspects of human physiology and thus are of high therapeutic interest. GPCR signaling is regulated in space and time by receptor phosphorylation. It is believed that different phosphorylation states are possible for a single receptor, and each encodes for unique signaling outcomes. Methods to determine the phosphorylation status of GPCRs are critical for understanding receptor physiology and signaling properties of GPCR ligands and therapeutics. However, common proteomic techniques have provided limited quantitative information regarding total receptor phosphorylation stoichiometry, relative abundances of isomeric modification states, and temporal dynamics of these parameters. Here, we report a novel middle-down proteomic strategy and parallel reaction monitoring (PRM) to quantify the phosphorylation states of the C-terminal tail of metabotropic glutamate receptor 2 (mGluR2). By this approach, we found that mGluR2 is subject to both basal and agonist-induced phosphorylation at up to four simultaneous sites with varying probability. Using a PRM tandem mass spectrometry methodology, we localized the positions and quantified the relative abundance of phosphorylations following treatment with an agonist. Our analysis showed that phosphorylation within specific regions of the C-terminal tail of mGluR2 is sensitive to receptor activation, and subsequent site-directed mutagenesis of these sites identified key regions which tune receptor sensitivity. This study demonstrates that middle-down purification followed by label-free quantification is a powerful, quantitative, and accessible tool for characterizing phosphorylation states of GPCRs and other challenging proteins.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Receptores Acoplados a Proteínas G/química , Fosforilação , Transdução de Sinais/fisiologia , Ligantes , Proteômica , Espectrometria de Massas , Proteínas de Transporte/metabolismo
2.
Nat Chem Biol ; 17(3): 291-297, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33398167

RESUMO

G protein-coupled receptors (GPCRs) relay information across cell membranes through conformational coupling between the ligand-binding domain and cytoplasmic signaling domain. In dimeric class C GPCRs, the mechanism of this process, which involves propagation of local ligand-induced conformational changes over 12 nm through three distinct structural domains, is unknown. Here, we used single-molecule FRET and live-cell imaging and found that metabotropic glutamate receptor 2 (mGluR2) interconverts between four conformational states, two of which were previously unknown, and activation proceeds through the conformational selection mechanism. Furthermore, the conformation of the ligand-binding domains and downstream domains are weakly coupled. We show that the intermediate states act as conformational checkpoints for activation and control allosteric modulation of signaling. Our results demonstrate a mechanism for activation of mGluRs where ligand binding controls the proximity of signaling domains, analogous to some receptor kinases. This design principle may be generalizable to other biological allosteric sensors.


Assuntos
Ácido Glutâmico/química , Receptores de Glutamato Metabotrópico/química , Regulação Alostérica , Aminoácidos/farmacologia , Sítios de Ligação , Técnicas Biossensoriais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Ciclopropanos/farmacologia , Transferência Ressonante de Energia de Fluorescência , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ácido Glutâmico/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Imagem Individual de Molécula
3.
Sci Adv ; 2(6): e1600265, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27386579

RESUMO

Time-gated Förster resonance energy transfer (FRET) using the unique material combination of long-lifetime terbium complexes (Tb) and semiconductor quantum dots (QDs) provides many advantages for highly sensitive and multiplexed biosensing. Although time-gated detection can efficiently suppress sample autofluorescence and background fluorescence from directly excited FRET acceptors, Tb-to-QD FRET has rarely been exploited for biomolecular imaging. We demonstrate Tb-to-QD time-gated FRET nanoassemblies that can be applied for intra- and extracellular imaging. Immunostaining of different epitopes of the epidermal growth factor receptor (EGFR) with Tb- and QD-conjugated antibodies and nanobodies allowed for efficient Tb-to-QD FRET on A431 cell membranes. The broad usability of Tb-to-QD FRET was further demonstrated by intracellular Tb-to-QD FRET and Tb-to-QD-to-dye FRET using microinjection as well as cell-penetrating peptide-mediated endocytosis with HeLa cells. Effective brightness enhancement by FRET from several Tb to the same QD, the use of low nanomolar concentrations, and the quick and sensitive detection void of FRET acceptor background fluorescence are important advantages for advanced intra- and extracellular imaging of biomolecular interactions.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Nanoestruturas/química , Imagem Óptica/métodos , Linhagem Celular , Peptídeos Penetradores de Células , Endocitose , Espaço Extracelular , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Espaço Intracelular , Microinjeções , Imagem Molecular/métodos , Imagem Molecular/normas , Imagem Óptica/normas , Pontos Quânticos , Semicondutores , Sensibilidade e Especificidade , Anticorpos de Domínio Único , Térbio
4.
ACS Sens ; 1(10): 1244-1250, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-28503661

RESUMO

A quantum-dot based ratiometric fluorescent oxygen probe for the detection of hypoxia in live cells is reported. The system is comprised of a water-soluble near-infrared emissive quantum dot conjugated to perylene dye. The response to the oxygen concentration is investigated using enzymatic oxygen scavenging in water, while in vitro studies were performed with HeLa cells incubated under varying O2 levels. In both cases a significant enhancement in dye/QD emission intensity ratio was observed in the deoxygenated environment, demonstrating the possible use of this probe for cancer research.

5.
J Lipid Res ; 54(12): 3531-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24006510

RESUMO

Membrane-protein interaction plays key roles in a wide variety of biological processes. Although various methods have been employed to measure membrane binding of soluble proteins, a robust high-throughput assay that is universally applicable to all proteins is lacking at present. Here we report a new fluorescence quenching assay utilizing enhanced green fluorescence protein (EGFP)-fusion proteins and a lipid containing a dark quencher, N-dimethylaminoazobenzenesulfonyl-phosphatidylethanolamine (dabsyl-PE). The EGFP fluorescence emission intensity showed a large decrease (i.e., >50%) when EGFP-fusion proteins bound the vesicles containing 5 mol% dabsyl-PE. This simple assay, which can be performed using either a cuvette-based spectrofluorometer or a fluorescence plate reader, allowed rapid, sensitive, and accurate determination of lipid specificity and affinity for various lipid binding domains, including two pleckstrin homology domains, an epsin N-terminal homology domain, and a phox homology domain. The assay can also be applied to high-throughput screening of small molecules that modulate membrane binding of proteins.


Assuntos
Membrana Celular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Espectrometria de Fluorescência/métodos , Avaliação Pré-Clínica de Medicamentos , Lipídeos de Membrana/metabolismo , Fosfatidiletanolaminas/química , Ligação Proteica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA