RESUMO
Predisposing factors underlying familial aggregation of non-syndromic gliomas are still to be uncovered. Whole-exome sequencing was performed in four Finnish families with brain tumors to identify rare predisposing variants. A total of 417 detected exome variants and 102 previously reported glioma-related variants were further genotyped in 19 Finnish families with brain tumors using targeted sequencing. Rare damaging variants in GALNT13, MYO10 and AR were identified. Two families carried either c.553C>T (R185C) or c.1214T>A (L405Q) on GALNT13. Variant c.553C>T is located on the substrate-binding site of GALNT13. AR c.2180G>T (R727L), which is located on a ligand-binding domain of AR, was detected in two families, one of which also carried a GALNT13 variant. MYO10 c.4448A>G (N1483S) was detected in two families and c.1511C>T (A504V) variant was detected in one family. Both variants are located on functional domains related to MYO10 activity in filopodia formation. In addition, affected cases in six families carried a known glioma risk variant rs55705857 in CCDC26 and low-risk glioma variants. These novel findings indicate polygenic inheritance of familial glioma in Finland and increase our understanding of the genetic contribution to familial glioma susceptibility.
Assuntos
Predisposição Genética para Doença , Glioma , N-Acetilgalactosaminiltransferases , Linhagem , Humanos , Finlândia , Glioma/genética , Glioma/patologia , Feminino , Masculino , N-Acetilgalactosaminiltransferases/genética , Polipeptídeo N-Acetilgalactosaminiltransferase , Mutação em Linhagem Germinativa , Adulto , Pessoa de Meia-Idade , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Sequenciamento do ExomaRESUMO
Atypical teratoid/rhabdoid tumors (AT/RTs) are pediatric brain tumors known for their aggressiveness and aberrant but still unresolved epigenetic regulation. To better understand their malignancy, we investigated how AT/RT-specific DNA hypermethylation was associated with gene expression and altered transcription factor binding and how it is linked to upstream regulation. Medulloblastomas, choroid plexus tumors, pluripotent stem cells, and fetal brain were used as references. A part of the genomic regions, which were hypermethylated in AT/RTs similarly as in pluripotent stem cells and demethylated in the fetal brain, were targeted by neural transcriptional regulators. AT/RT-unique DNA hypermethylation was associated with polycomb repressive complex 2 and linked to suppressed genes with a role in neural development and tumorigenesis. Activity of the several NEUROG/NEUROD pioneer factors, which are unable to bind to methylated DNA, was compromised via the suppressed expression or DNA hypermethylation of their target sites, which was also experimentally validated for NEUROD1 in medulloblastomas and AT/RT samples. These results highlight and characterize the role of DNA hypermethylation in AT/RT malignancy and halted neural cell differentiation.
Assuntos
Neoplasias Cerebelares , Meduloblastoma , Tumor Rabdoide , Criança , Humanos , Meduloblastoma/genética , Metilação de DNA/genética , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patologia , Epigênese Genética/genética , Neoplasias Cerebelares/genética , DNA/metabolismoRESUMO
Brain tumors typically arise sporadically and do not affect several family members simultaneously. In the present study, we describe clinical and genetic data from two patients, a mother and her daughter, with familial brain tumors. Exome sequencing revealed a germline missense mutation in the TP53 and ATRX genes in both cases, and a somatic copy-neutral loss of heterozygosity (LOH) in TP53 in both atypical teratoid/rhabdoid tumor (AT/RT) and astrocytoma tumors. ATRX mutation was associated with the loss of ATRX protein expression. In the astrocytoma case, R132C missense mutation was found in the known hotspot site in isocitrate dehydrogenase 1 (IDH1) and LOH was detected in TP53 The mother carried few other somatic alterations, suggesting that the IDH1 mutation and LOH in TP53 were sufficient to drive tumor development. The genome in the AT/RT tumor was atypically aneuploid: Most chromosomes had experienced copy-neutral LOH or whole-chromosome gains. Only Chromosome 18 had normal diploid status. INI1/hSNF5/SMARCB1 was homozygously deleted in the AT/RT tumor. This report provides further information about tumor development in a predisposed genetic background and describes two special Li-Fraumeni cases with a familial brain tumor.
RESUMO
To understand functional consequences of genetic and transcriptional aberrations in prostate cancer, the proteomic changes during disease formation and progression need to be revealed. Here we report high-throughput mass spectrometry on clinical tissue samples of benign prostatic hyperplasia (BPH), untreated primary prostate cancer (PC) and castration resistant prostate cancer (CRPC). Each sample group shows a distinct protein profile. By integrative analysis we show that, especially in CRPC, gene copy number, DNA methylation, and RNA expression levels do not reliably predict proteomic changes. Instead, we uncover previously unrecognized molecular and pathway events, for example, several miRNA target correlations present at protein but not at mRNA level. Notably, we identify two metabolic shifts in the citric acid cycle (TCA cycle) during prostate cancer development and progression. Our proteogenomic analysis uncovers robustness against genomic and transcriptomic aberrations during prostate cancer progression, and significantly extends understanding of prostate cancer disease mechanisms.
Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas de Neoplasias/genética , Hiperplasia Prostática/genética , Neoplasias de Próstata Resistentes à Castração/genética , Transcriptoma , Idoso , Ciclo do Ácido Cítrico/genética , Metilação de DNA , Progressão da Doença , Dosagem de Genes , Estudo de Associação Genômica Ampla , Genômica , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Próstata/metabolismo , Próstata/patologia , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
BACKGROUND: Somatic alterations, including loss of heterozygosity, can affect the expression of oncogenes and tumor suppressor genes. Whole genome sequencing enables detailed characterization of such aberrations. However, due to the limitations of current high throughput sequencing technologies, this task remains challenging. Hence, accurate and reliable detection of such events is crucial for the identification of cancer-related alterations. RESULTS: We introduce a new tool called Segmentum for determining somatic copy numbers using whole genome sequencing from paired tumor/normal samples. In our approach, read depth and B-allele fraction signals are smoothed, and double sliding windows are used to detect breakpoints, which makes our approach fast and straightforward. Because the breakpoint detection is performed simultaneously at different scales, it allows accurate detection as suggested by the evaluation results from simulated and real data. We applied Segmentum to paired tumor/normal whole genome sequencing samples from 38 patients with low-grade glioma from the TCGA dataset and were able to confirm the recurrence of copy-neutral loss of heterozygosity in chromosome 17p in low-grade astrocytoma characterized by IDH1/2 mutation and lack of 1p/19q co-deletion, which was previously reported using SNP array data. CONCLUSIONS: Segmentum is an accurate, user-friendly tool for somatic copy number analysis of tumor samples. We demonstrate that this tool is suitable for the analysis of large cohorts, such as the TCGA dataset.