Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 590, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953431

RESUMO

Dysfunctions in the endocannabinoid system have been associated with experimental animal models and multiple sclerosis patients. Interestingly, the endocannabinoid system has been reported to confer neuroprotection against demyelination. The present study aims to assess the effects of the cannabinoid agonist WIN-55,212-2 in cuprizone fed animals on myelin repair capacity. Animals exposed to cuprizone were simultaneously treated withWIN-55,212-2, behaviorally tested and finally the corpus callosum was exhaustively studied by Western blotting, qRT-PCR and a myelin staining procedure. We report that the long-term administration of WIN-55,212-2 reduced the global amount of CB1 protein. Histological analysis revealed clear demyelination after being fed cuprizone for three weeks. However, cuprizone-fed mice subjected to 0.5 mg/Kg of WIN-55,212-2 displayed no differences when compared to controls during demyelination, although there was a robust increase in the myelinated axons during the remyelination phase. These animals displayed better performance on contextual fear conditioning which was in turn non-attributable to an antinociceptive effect. In contrast, a 1 mg/Kg dosage caused a remarkable demyelination accompanied by limited potential for myelin repair. Upon drug administration while mice ongoing demyeliniation, the expression of Aif1 (microglia) and Gfap (astrocytes) followed a dose-dependent manner whereas the expression of both markers was apparently attenuated during remyelination. Treatment with vehicle or 0.5 mg/Kg of the drug during demyelination increased the expression of Pdgfra (oligodendrocyte precursor cells) but this did not occur when 1 mg/Kg was administered. In conclusion, the drug at 0.5 mg/Kg did not alter myelin architecture while 1 mg/Kg had a deleterious effect in this model.


Assuntos
Benzoxazinas/administração & dosagem , Cuprizona/efeitos adversos , Doenças Desmielinizantes/tratamento farmacológico , Morfolinas/administração & dosagem , Bainha de Mielina/metabolismo , Naftalenos/administração & dosagem , Animais , Benzoxazinas/farmacologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Corpo Caloso/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Relação Dose-Resposta a Droga , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Morfolinas/farmacologia , Bainha de Mielina/genética , Naftalenos/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
2.
Cytogenet Genome Res ; 129(4): 290-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20625242

RESUMO

The MECP2 gene, located at Xq28, encodes methyl-CpG-binding protein 2 (MeCP2), which is frequently mutated (up to 90%) in Rett syndrome (RTT). RTT is a progressive neurodevelopmental disorder, which affects primarily girls during early childhood and it is one of the most common causes of mental retardation in females. R270X is one of the most frequent recurrent MECP2 mutations among RTT cohorts. The R270X mutation resides within the TRD-NLS (Transcription Repression Domain-Nuclear Localization Signal) region of MeCP2 and causes a more severe clinical phenotype with increased mortality as compared to other mutations. To evaluate the functional role of the R270X mutation, we generated a transgenic mouse model expressing MeCP2(270_EGFP) (human mutation equivalent) by BAC recombineering. The expression pattern of MeCP2(270_EGFP) was similar to that of endogenous MeCP2. Strikingly, MeCP2(270_EGFP) localizes in the nucleus, contrary to the conjecture that R270X could cause disruption of the NLS. In primary hippocampal cells, we show that MeCP2(270_EGFP) was expressed in astrocytes by colocalization with the astrocyte-specific marker glial fibrillary acidic protein. Our data showing expression of MeCP2(270_EGFP) in transgenic mice astrocytes further reinforce the recent findings concerning the expression of MeCP2 in the glial cells.


Assuntos
Astrócitos/metabolismo , Núcleo Celular/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação , Neurônios/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células Cultivadas , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA