Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511598

RESUMO

MOTIVATION: Since early 2020, the coronavirus disease 2019 (COVID-19) pandemic has confronted the biomedical community with an unprecedented challenge. The rapid spread of COVID-19 and ease of transmission seen worldwide is due to increased population flow and international trade. Front-line medical care, treatment research and vaccine development also require rapid and informative interpretation of the literature and COVID-19 data produced around the world, with 177 500 papers published between January 2020 and November 2021, i.e. almost 8500 papers per month. To extract knowledge and enable interoperability across resources, we developed the COVID-19 Vocabulary (COVoc), an application ontology related to the research on this pandemic. The main objective of COVoc development was to enable seamless navigation from biomedical literature to core databases and tools of ELIXIR, a European-wide intergovernmental organization for life sciences. RESULTS: This collaborative work provided data integration into SIB Literature services, an application ontology (COVoc) and a triage service named COVTriage and based on annotation processing to search for COVID-related information across pre-defined aspects with daily updates. Thanks to its interoperability potential, COVoc lends itself to wider applications, hopefully through further connections with other novel COVID-19 ontologies as has been established with Coronavirus Infectious Disease Ontology. AVAILABILITY AND IMPLEMENTATION: The data at https://github.com/EBISPOT/covoc and the service at https://candy.hesge.ch/COVTriage.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , Triagem , Comércio , Internacionalidade
3.
Lancet Planet Health ; 5(10): e746-e750, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34562356

RESUMO

Connecting basic data about bats and other potential hosts of SARS-CoV-2 with their ecological context is crucial to the understanding of the emergence and spread of the virus. However, when lockdowns in many countries started in March, 2020, the world's bat experts were locked out of their research laboratories, which in turn impeded access to large volumes of offline ecological and taxonomic data. Pandemic lockdowns have brought to attention the long-standing problem of so-called biological dark data: data that are published, but disconnected from digital knowledge resources and thus unavailable for high-throughput analysis. Knowledge of host-to-virus ecological interactions will be biased until this challenge is addressed. In this Viewpoint, we outline two viable solutions: first, in the short term, to interconnect published data about host organisms, viruses, and other pathogens; and second, to shift the publishing framework beyond unstructured text (the so-called PDF prison) to labelled networks of digital knowledge. As the indexing system for biodiversity data, biological taxonomy is foundational to both solutions. Building digitally connected knowledge graphs of host-pathogen interactions will establish the agility needed to quickly identify reservoir hosts of novel zoonoses, allow for more robust predictions of emergence, and thereby strengthen human and planetary health systems.


Assuntos
COVID-19 , Interações entre Hospedeiro e Microrganismos , Armazenamento e Recuperação da Informação , Animais , COVID-19/epidemiologia , COVID-19/virologia , Humanos , SARS-CoV-2 , Zoonoses
4.
Zootaxa ; 4958(1): zootaxa.4958.1.4, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33903451

RESUMO

Here we present a descriptive analysis of the bibliographic production of the world-renowned heteropterist Dr. Jocélia Grazia and comments on her taxonomic reach based on extracted taxonomic treatments. We analyzed a total of 219 published documents, including scientific papers, scientific notes, and book chapters. Additionally, we applied the Plazi workflow to extract taxonomic treatments, images, tables, treatment citations and materials citations, and references from 75 different documents in accordance with the FAIR (Findability, Accessibility, Interoperability, and Reuse) principles and made them available on the Biodiversity Literature Repository (BLR), hosted on Zenodo, and on TreatmentBank. We found that Dr. Grazia published 200 new names, including species (183) and genera (17), and 1,444 taxonomic treatments in total. From these, 104 and 581, respectively, were extracted after applying the Plazi Workflow. A total of 544 figures, 50 tables, 2,242 references, 2,107 materials citations, and 1,101 treatment citations were also extracted. In order to make her publications properly citable and accessible, we assigned DOIs (Digital Object Identifiers) for all publications that lacked this persistent identifier, including those that were not processed (88 in total), therefore enhancing the open-access share of her publications.


Assuntos
Classificação , Publicações , Animais , História do Século XX , História do Século XXI , Insetos/classificação , Publicações/estatística & dados numéricos
5.
F1000Res ; 102021.
Artigo em Inglês | MEDLINE | ID: mdl-35999898

RESUMO

Threats to global biodiversity are increasingly recognised by scientists and the public as a critical challenge. Molecular sequencing technologies offer means to catalogue, explore, and monitor the richness and biogeography of life on Earth. However, exploiting their full potential requires tools that connect biodiversity infrastructures and resources. As a research infrastructure developing services and technical solutions that help integrate and coordinate life science resources across Europe, ELIXIR is a key player. To identify opportunities, highlight priorities, and aid strategic thinking, here we survey approaches by which molecular technologies help inform understanding of biodiversity. We detail example use cases to highlight how DNA sequencing is: resolving taxonomic issues; Increasing knowledge of marine biodiversity; helping understand how agriculture and biodiversity are critically linked; and playing an essential role in ecological studies. Together with examples of national biodiversity programmes, the use cases show where progress is being made but also highlight common challenges and opportunities for future enhancement of underlying technologies and services that connect molecular and wider biodiversity domains. Based on emerging themes, we propose key recommendations to guide future funding for biodiversity research: biodiversity and bioinformatic infrastructures need to collaborate closely and strategically; taxonomic efforts need to be aligned and harmonised across domains; metadata needs to be standardised and common data management approaches widely adopted; current approaches need to be scaled up dramatically to address the anticipated explosion of molecular data; bioinformatics support for biodiversity research needs to be enabled and sustained; training for end users of biodiversity research infrastructures needs to be prioritised; and community initiatives need to be proactive and focused on enabling solutions. For sequencing data to deliver their full potential they must be connected to knowledge: together, molecular sequence data collection initiatives and biodiversity research infrastructures can advance global efforts to prevent further decline of Earth's biodiversity.


Assuntos
Biodiversidade , Disciplinas das Ciências Biológicas , Biologia Computacional , Europa (Continente)
6.
Nat Ecol Evol ; 2(10): 1531-1540, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30224814

RESUMO

Essential Biodiversity Variables (EBVs) allow observation and reporting of global biodiversity change, but a detailed framework for the empirical derivation of specific EBVs has yet to be developed. Here, we re-examine and refine the previous candidate set of species traits EBVs and show how traits related to phenology, morphology, reproduction, physiology and movement can contribute to EBV operationalization. The selected EBVs express intra-specific trait variation and allow monitoring of how organisms respond to global change. We evaluate the societal relevance of species traits EBVs for policy targets and demonstrate how open, interoperable and machine-readable trait data enable the building of EBV data products. We outline collection methods, meta(data) standardization, reproducible workflows, semantic tools and licence requirements for producing species traits EBVs. An operationalization is critical for assessing progress towards biodiversity conservation and sustainable development goals and has wide implications for data-intensive science in ecology, biogeography, conservation and Earth observation.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Invertebrados , Características de História de Vida , Plantas , Vertebrados , Animais
7.
J Biomed Semantics ; 9(1): 5, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29347997

RESUMO

BACKGROUND: The biodiversity domain, and in particular biological taxonomy, is moving in the direction of semantization of its research outputs. The present work introduces OpenBiodiv-O, the ontology that serves as the basis of the OpenBiodiv Knowledge Management System. Our intent is to provide an ontology that fills the gaps between ontologies for biodiversity resources, such as DarwinCore-based ontologies, and semantic publishing ontologies, such as the SPAR Ontologies. We bridge this gap by providing an ontology focusing on biological taxonomy. RESULTS: OpenBiodiv-O introduces classes, properties, and axioms in the domains of scholarly biodiversity publishing and biological taxonomy and aligns them with several important domain ontologies (FaBiO, DoCO, DwC, Darwin-SW, NOMEN, ENVO). By doing so, it bridges the ontological gap across scholarly biodiversity publishing and biological taxonomy and allows for the creation of a Linked Open Dataset (LOD) of biodiversity information (a biodiversity knowledge graph) and enables the creation of the OpenBiodiv Knowledge Management System. A key feature of the ontology is that it is an ontology of the scientific process of biological taxonomy and not of any particular state of knowledge. This feature allows it to express a multiplicity of scientific opinions. The resulting OpenBiodiv knowledge system may gain a high level of trust in the scientific community as it does not force a scientific opinion on its users (e.g. practicing taxonomists, library researchers, etc.), but rather provides the tools for experts to encode different views as science progresses. CONCLUSIONS: OpenBiodiv-O provides a conceptual model of the structure of a biodiversity publication and the development of related taxonomic concepts. It also serves as the basis for the OpenBiodiv Knowledge Management System.


Assuntos
Ontologias Biológicas , Biodiversidade , Classificação , Semântica
8.
Biol Rev Camb Philos Soc ; 93(1): 600-625, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28766908

RESUMO

Much biodiversity data is collected worldwide, but it remains challenging to assemble the scattered knowledge for assessing biodiversity status and trends. The concept of Essential Biodiversity Variables (EBVs) was introduced to structure biodiversity monitoring globally, and to harmonize and standardize biodiversity data from disparate sources to capture a minimum set of critical variables required to study, report and manage biodiversity change. Here, we assess the challenges of a 'Big Data' approach to building global EBV data products across taxa and spatiotemporal scales, focusing on species distribution and abundance. The majority of currently available data on species distributions derives from incidentally reported observations or from surveys where presence-only or presence-absence data are sampled repeatedly with standardized protocols. Most abundance data come from opportunistic population counts or from population time series using standardized protocols (e.g. repeated surveys of the same population from single or multiple sites). Enormous complexity exists in integrating these heterogeneous, multi-source data sets across space, time, taxa and different sampling methods. Integration of such data into global EBV data products requires correcting biases introduced by imperfect detection and varying sampling effort, dealing with different spatial resolution and extents, harmonizing measurement units from different data sources or sampling methods, applying statistical tools and models for spatial inter- or extrapolation, and quantifying sources of uncertainty and errors in data and models. To support the development of EBVs by the Group on Earth Observations Biodiversity Observation Network (GEO BON), we identify 11 key workflow steps that will operationalize the process of building EBV data products within and across research infrastructures worldwide. These workflow steps take multiple sequential activities into account, including identification and aggregation of various raw data sources, data quality control, taxonomic name matching and statistical modelling of integrated data. We illustrate these steps with concrete examples from existing citizen science and professional monitoring projects, including eBird, the Tropical Ecology Assessment and Monitoring network, the Living Planet Index and the Baltic Sea zooplankton monitoring. The identified workflow steps are applicable to both terrestrial and aquatic systems and a broad range of spatial, temporal and taxonomic scales. They depend on clear, findable and accessible metadata, and we provide an overview of current data and metadata standards. Several challenges remain to be solved for building global EBV data products: (i) developing tools and models for combining heterogeneous, multi-source data sets and filling data gaps in geographic, temporal and taxonomic coverage, (ii) integrating emerging methods and technologies for data collection such as citizen science, sensor networks, DNA-based techniques and satellite remote sensing, (iii) solving major technical issues related to data product structure, data storage, execution of workflows and the production process/cycle as well as approaching technical interoperability among research infrastructures, (iv) allowing semantic interoperability by developing and adopting standards and tools for capturing consistent data and metadata, and (v) ensuring legal interoperability by endorsing open data or data that are free from restrictions on use, modification and sharing. Addressing these challenges is critical for biodiversity research and for assessing progress towards conservation policy targets and sustainable development goals.


Assuntos
Distribuição Animal/fisiologia , Biodiversidade , Monitoramento Ambiental/métodos , Animais , Modelos Biológicos
9.
Ecology ; 98(3): 883-884, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27984661

RESUMO

What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51 ,388 ant abundance and occurrence records of more than 2,693 species and 7,953 morphospecies from local assemblages collected at 4,212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type, and degree of disturbance. The aim of compiling this data set was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardized methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing data set.


Assuntos
Formigas/fisiologia , Bases de Dados Factuais , Ecologia , Animais , Formigas/classificação , Ecossistema
10.
Biodivers Data J ; (3): e5707, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26491392

RESUMO

A cybercatalog to the Apioceridae (apiocerid flies) of the Afrotropical Region is provided. Each taxon entry includes links to open-access, online repositories such as ZooBank, BHL/BioStor/BLR, Plazi, GBIF, Morphbank, EoL, and a research web-site to access taxonomic information, digitized literature, morphological descriptions, specimen occurrence data, and images. Cybercatalogs as the one presented here will need to become the future of taxonomic catalogs taking advantage of the growing number of online repositories, linked data, and be easily updatable. Comments on the deposition of the holotype of Apiocera braunsi Melander, 1907 are made.

11.
Biodivers Data J ; (3): e5063, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26023286

RESUMO

Specimen data in taxonomic literature are among the highest quality primary biodiversity data. Innovative cybertaxonomic journals are using workflows that maintain data structure and disseminate electronic content to aggregators and other users; such structure is lost in traditional taxonomic publishing. Legacy taxonomic literature is a vast repository of knowledge about biodiversity. Currently, access to that resource is cumbersome, especially for non-specialist data consumers. Markup is a mechanism that makes this content more accessible, and is especially suited to machine analysis. Fine-grained XML (Extensible Markup Language) markup was applied to all (37) open-access articles published in the journal Zootaxa containing treatments on spiders (Order: Araneae). The markup approach was optimized to extract primary specimen data from legacy publications. These data were combined with data from articles containing treatments on spiders published in Biodiversity Data Journal where XML structure is part of the routine publication process. A series of charts was developed to visualize the content of specimen data in XML-tagged taxonomic treatments, either singly or in aggregate. The data can be filtered by several fields (including journal, taxon, institutional collection, collecting country, collector, author, article and treatment) to query particular aspects of the data. We demonstrate here that XML markup using GoldenGATE can address the challenge presented by unstructured legacy data, can extract structured primary biodiversity data which can be aggregated with and jointly queried with data from other Darwin Core-compatible sources, and show how visualization of these data can communicate key information contained in biodiversity literature. We complement recent studies on aspects of biodiversity knowledge using XML structured data to explore 1) the time lag between species discovry and description, and 2) the prevelence of rarity in species descriptions.

12.
Zookeys ; (494): 133-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25901117

RESUMO

Biodiversity data is being digitized and made available online at a rapidly increasing rate but current practices typically do not preserve linkages between these data, which impedes interoperation, provenance tracking, and assembly of larger datasets. For data associated with biocollections, the biodiversity community has long recognized that an essential part of establishing and preserving linkages is to apply globally unique identifiers at the point when data are generated in the field and to persist these identifiers downstream, but this is seldom implemented in practice. There has neither been coalescence towards one single identifier solution (as in some other domains), nor even a set of recommended best practices and standards to support multiple identifier schemes sharing consistent responses. In order to further progress towards a broader community consensus, a group of biocollections and informatics experts assembled in Stockholm in October 2014 to discuss community next steps to overcome current roadblocks. The workshop participants divided into four groups focusing on: identifier practice in current field biocollections; identifier application for legacy biocollections; identifiers as applied to biodiversity data records as they are published and made available in semantically marked-up publications; and cross-cutting identifier solutions that bridge across these domains. The main outcome was consensus on key issues, including recognition of differences between legacy and new biocollections processes, the need for identifier metadata profiles that can report information on identifier persistence missions, and the unambiguous indication of the type of object associated with the identifier. Current identifier characteristics are also summarized, and an overview of available schemes and practices is provided.

13.
Zookeys ; (414): 109-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25009418

RESUMO

Background. The 7(th) Framework Programme for Research and Technological Development is helping the European Union to prepare for an integrative system for intelligent management of biodiversity knowledge. The infrastructure that is envisaged and that will be further developed within the Programme "Horizon 2020" aims to provide open and free access to taxonomic information to anyone with a requirement for biodiversity data, without the need for individual consent of other persons or institutions. Open and free access to information will foster the re-use and improve the quality of data, will accelerate research, and will promote new types of research. Progress towards the goal of free and open access to content is hampered by numerous technical, economic, sociological, legal, and other factors. The present article addresses barriers to the open exchange of biodiversity knowledge that arise from European laws, in particular European legislation on copyright and database protection rights. We present a legal point of view as to what will be needed to bring distributed information together and facilitate its re-use by data mining, integration into semantic knowledge systems, and similar techniques. We address exceptions and limitations of copyright or database protection within Europe, and we point to the importance of data use agreements. We illustrate how exceptions and limitations have been transformed into national legislations within some European states to create inconsistencies that impede access to biodiversity information. Conclusions. The legal situation within the EU is unsatisfactory because there are inconsistencies among states that hamper the deployment of an open biodiversity knowledge management system. Scientists within the EU who work with copyright protected works or with protected databases have to be aware of regulations that vary from country to country. This is a major stumbling block to international collaboration and is an impediment to the open exchange of biodiversity knowledge. Such differences should be removed by unifying exceptions and limitations for research purposes in a binding, Europe-wide regulation.

14.
BMC Res Notes ; 7: 79, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24495358

RESUMO

BACKGROUND: As biological disciplines extend into the 'big data' world, they will need a names-based infrastructure to index and interconnect distributed data. The infrastructure must have access to all names of all organisms if it is to manage all information. Those who compile lists of species hold different views as to the intellectual property rights that apply to the lists. This creates uncertainty that impedes the development of a much-needed infrastructure for sharing biological data in the digital world. FINDINGS: The laws in the United States of America and European Union are consistent with the position that scientific names of organisms and their compilation in checklists, classifications or taxonomic revisions are not subject to copyright. Compilations of names, such as classifications or checklists, are not creative in the sense of copyright law. Many content providers desire credit for their efforts. CONCLUSIONS: A 'blue list' identifies elements of checklists, classifications and monographs to which intellectual property rights do not apply. To promote sharing, authors of taxonomic content, compilers, intermediaries, and aggregators should receive citable recognition for their contributions, with the greatest recognition being given to the originating authors. Mechanisms for achieving this are discussed.


Assuntos
Classificação , Direitos Autorais , Terminologia como Assunto , Lista de Checagem , Bases de Dados Factuais/legislação & jurisprudência , União Europeia , Internacionalidade/legislação & jurisprudência , Licenciamento , Propriedade/legislação & jurisprudência , Editoração/legislação & jurisprudência , Editoração/normas , Sistema de Registros , Estados Unidos
15.
BMC Ecol ; 13: 16, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23587026

RESUMO

Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the most prominent discipline involved. To some extent this is inevitable, given the use of species names as the pivot around which information is organised. To address the urgent questions around conservation, land-use, environmental change, sustainability, food security and ecosystem services that are facing Governments worldwide, we need to understand how the ecosystem works. So, we need a systems approach to understanding biodiversity that moves significantly beyond taxonomy and species observations. Such an approach needs to look at the whole system to address species interactions, both with their environment and with other species.It is clear that some barriers to progress are sociological, basically persuading people to use the technological solutions that are already available. This is best addressed by developing more effective systems that deliver immediate benefit to the user, hiding the majority of the technology behind simple user interfaces. An infrastructure should be a space in which activities take place and, as such, should be effectively invisible.This community consultation paper positions the role of biodiversity informatics, for the next decade, presenting the actions needed to link the various biodiversity infrastructures invisibly and to facilitate understanding that can support both business and policy-makers. The community considers the goal in biodiversity informatics to be full integration of the biodiversity research community, including citizens' science, through a commonly-shared, sustainable e-infrastructure across all sub-disciplines that reliably serves science and society alike.


Assuntos
Biodiversidade , Biologia Computacional/instrumentação , Biologia Computacional/métodos , Animais , Ecossistema , Humanos , Disseminação de Informação
18.
Zookeys ; (150): 89-116, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22207808

RESUMO

We review the three most widely used XML schemas used to mark-up taxonomic texts, TaxonX, TaxPub and taXMLit. These are described from the viewpoint of their development history, current status, implementation, and use cases. The concept of "taxon treatment" from the viewpoint of taxonomy mark-up into XML is discussed. TaxonX and taXMLit are primarily designed for legacy literature, the former being more lightweight and with a focus on recovery of taxon treatments, the latter providing a much more detailed set of tags to facilitate data extraction and analysis. TaxPub is an extension of the National Library of Medicine Document Type Definition (NLM DTD) for taxonomy focussed on layout and recovery and, as such, is best suited for mark-up of new publications and their archiving in PubMedCentral. All three schemas have their advantages and shortcomings and can be used for different purposes.

19.
Zookeys ; (150): 127-49, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22207810

RESUMO

The Creative Commons (CC) licenses are a suite of copyright-based licenses defining terms for the distribution and re-use of creative works. CC provides licenses for different use cases and includes open content licenses such as the Attribution license (CC BY, used by many Open Access scientific publishers) and the Attribution Share Alike license (CC BY-SA, used by Wikipedia, for example). However, the license suite also contains non-free and non-open licenses like those containing a "non-commercial" (NC) condition. Although many people identify "non-commercial" with "non-profit", detailed analysis reveals that significant differences exist and that the license may impose some unexpected re-use limitations on works thus licensed. After providing background information on the concepts of Creative Commons licenses in general, this contribution focuses on the NC condition, its advantages, disadvantages and appropriate scope. Specifically, it contributes material towards a risk analysis for potential re-users of NC-licensed works.

20.
Zookeys ; (90): 1-12, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21594104

RESUMO

Scholarly publishing and citation practices have developed largely in the absence of versioned documents. The digital age requires new practices to combine the old and the new. We describe how the original published source and a versioned wiki page based on it can be reconciled and combined into a single citation reference. We illustrate the citation mechanism by way of practical examples focusing on journal and wiki publishing of taxon treatments. Specifically, we discuss mechanisms for permanent cross-linking between the static original publication and the dynamic, versioned wiki, as well as for automated export of journal content to the wiki, to reduce the workload on authors, for combining the journal and the wiki citation and for integrating it with the attribution of wiki contributors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA