Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 263(Pt 2): 130319, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387632

RESUMO

The antioxidant and antimicrobial properties of thyme essential oil (TEO) are useful for active food packaging, but its poor aqueous solubility restricts its applications. This work involves anionic cellulose nanofibers (CNFs) as the sole stabilizing agent for TEO-in-water emulsions, with oil concentrations ranging from 10 mL/L to 300 mL/L. A double mechanism was proposed: the adsorption of CNFs at oil/water interfaces restricted coalescence to a limited extent, while thickening (rheological stabilization) was required to avoid the buoyance of large droplets (>10 µm). Thickening effects comprised both higher viscosity (over 0.1 Pa·s at 10 s-1) and yield stress (approximately 0.9 Pa). Dilute emulsions had good film-forming capabilities, whereas concentrated emulsions were suitable for paper coating. Regarding antimicrobial activity, CNF-stabilized TEO-in-water emulsions successfully inhibited the growth of both Gram-negative (E. coli, S. typhimurium) and Gram-positive bacteria (L. monocytogenes). As for the antioxidant properties, approximately 50 mg of paper or 3-5 mg of film per mL of food simulant D1 were required to attain 50 % inhibition in radical scavenging tests. Nonetheless, despite the stability and the active properties of these bio-based hydrocolloids, providing this antioxidant and antimicrobial activity was incompatible with maintaining the organoleptic properties of the foodstuff unaltered.


Assuntos
Anti-Infecciosos , Celulose Oxidada , Nanofibras , Óleos Voláteis , Óleos de Plantas , Timol , Thymus (Planta) , Emulsões , Escherichia coli , Antioxidantes/farmacologia , Celulose , Óleos Voláteis/farmacologia , Anti-Infecciosos/farmacologia
2.
Nanomaterials (Basel) ; 13(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37686928

RESUMO

This study aims to provide a comprehensive understanding of the key factors influencing the rheological behavior and the mechanisms of natural polyelectrolyte complexes (PECs) as flocculation agents for cellulose microfibers (CMFs) and nanofibers (CNFs). PECs were formed by combining two polyelectrolytes: xylan (Xyl) and chitosan (Ch), at different Xyl/Ch mass ratios: 60/40, 70/30, and 80/20. First, Xyl, Ch, and PEC solutions were characterized by measuring viscosity, critical concentration (c*), rheological parameter, ζ-potential, and hydrodynamic size. Then, the flocculation mechanisms of CMF and CNF suspensions with PECs under dynamic conditions were studied by measuring viscosity, while the flocculation under static conditions was examined through gel point measurements, floc average size determination, and ζ-potential analysis. The findings reveal that PEC solutions formed with a lower xylan mass ratio showed higher intrinsic viscosity, higher hydrodynamic size, higher z-potential, and a lower c*. This is due to the high molecular weight, charge, and gel-forming ability. All the analyzed solutions behave as a typical non-Newtonian shear-thinning fluid. The flocculation mechanisms under dynamic conditions showed that a very low dosage of PEC (between 2 and 6 mg PEC/g of fiber) was sufficient to produce flocculation. Under dynamic conditions, an increase in viscosity indicates flocculation at this low PEC dosage. Finally, under static conditions, maximum floc sizes were observed at the same PEC dosage where minimum gel points were reached. Higher PEC doses were required for CNF suspensions than for CMF suspensions.

3.
Int J Biol Macromol ; 253(Pt 4): 127054, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37769759

RESUMO

Enzymatic pretreatment plays a crucial role in producing cellulose nanofibers (CNFs) before fibrillation. While previous studies have explored how treatment severity affects CNF characteristics, there remains a lack of suitable parameters to monitor real-time enzymatic processes and fully comprehend the link between enzymatic action, fibrillation, and CNF properties. This study focuses on evaluating the impact of enzyme charge (using a monocomponent endoglucanase) and treatment time on cellulose fiber morphology and reducing sugar generation. For the first time, a random forest (RF) model is developed to predict reducing sugar concentration based on easily measurable process conditions (e.g., stirrer power consumption) and fiber/suspension characteristics like fines content and apparent viscosity. Polarized light optical microscopy was found to be a suitable technique to evaluate the morphological changes that fibers experience during enzymatic pretreatment. The research also revealed that endoglucanases initially induce surface fibrillation, releasing fine fibers into the suspension, followed by fiber swelling and shortening. Furthermore, the effect of enzymatic pretreatment on resulting CNF characteristics was studied at two fibrillation intensities, indicating that a high enzyme charge and short treatment times (e.g., 90 min) are sufficient to produce CNFs with a nanofibrillation yield of 19-23 % and a cationic demand ranging from 220 to 275 µeq/g. This work introduces a well-modeled enzymatic pretreatment process, unlocking its potential and reducing uncertainties for future upscaling endeavors.


Assuntos
Celulase , Nanofibras , Celulose , Açúcares , Carboidratos , Suspensões
4.
Molecules ; 28(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630416

RESUMO

Complexes of lanthanide ions, such as Eu(III) (red light emission) and Tb(III) (green light emission), with proper ligands can be highly luminescent and color-tunable, also attaining yellow and orange emission under UV radiation. The ligands employed in this work were poly(sodium acrylate), working as polymeric matrix, and 1,10-phenanthroline, taking advantage of its antenna effect. Possibilities of color display were further enhanced by incorporating a cationic polyfluorene with blue emission. This strategy allowed for obtaining cyan and magenta, besides the aforementioned colors. Uncoated cellulose paper was impregnated with the resulting luminescent inks, observing a strong hypsochromic shift in excitation wavelength upon drying. Hence, while a cheap UV-A lamp sufficed to reveal the polyfluorene's blue emission, shorter wavelengths were necessary to visualize the emission due to lanthanide ions as well. The capacity to reveal, with UV-C radiation, a full-color image that remains invisible under natural light is undoubtedly useful for anti-counterfeiting applications. Furthermore, both lanthanide ion complexes and polyfluorenes were shown to have their luminescence quenched by Cu(II) ions and nitroarenes, respectively.

5.
Nanomaterials (Basel) ; 13(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37630938

RESUMO

Beeswax is a bio-sourced, renewable, and even edible material that stands as a convincing option to provide paper-based food packaging with moisture resistance. Nonetheless, the difficulty of dispersing it in water limits its applicability. This work uses oxidized, negatively charged cellulose nanofibers along with glycerol to stabilize beeswax-in-water emulsions above the melting point of the wax. The synergistic effects of nanocellulose and glycerol granted the stability of the dispersion even when it cooled down, but only if the concentration of nanofibers was high enough. This required concentration (0.6-0.9 wt%) depended on the degree of oxidation of the cellulose nanofibers. Rheological hindrance was essential to prevent the buoyancy of beeswax particles, while the presence of glycerol prevented excessive aggregation. The mixtures had yield stress and showed pseudoplastic behavior at a high enough shear rate, with their apparent viscosity being positively influenced by the surface charge density of the nanofibers. When applied to packaging paper, the nanocellulose-stabilized beeswax suspensions not only enhanced its barrier properties towards liquid water (reaching a contact angle of 96°) and water vapor (<100 g m-2 d-1), but also to grease (Kit rating: 5) and airflow (>1400 Gurley s). While falling short of polyethylene-coated paper, this overall improvement, attained using only one layer of a biobased coating suspension, should be understood as a step towards replacing synthetic waxes and plastic laminates.

6.
Polymers (Basel) ; 15(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37447605

RESUMO

Composite materials containing natural reinforcement fibers, generally called biocomposites, have attracted the interest of both researchers and manufacturers, but the most environmentally advantageous combinations include a bio-based matrix, as well. With this in mind, a poly(lactic acid) (PLA) matrix was reinforced with natural fibers from hemp, both untreated strands (UHSs) and soda-bleached fibers (SBHFs). The preparation of the subsequent fully bio-sourced, discontinuously reinforced composites involved kinetic mixing, intensive single-screw extrusion, milling, and injection molding. Up to a fiber content of 30 wt%, the tensile modulus increased linearly with the volume fraction of the dispersed phase. Differences between SBHFs (up to 7.6 Gpa) and UHSs (up to 6.9 Gpa) were hardly significant (p = 0.1), but SBHF-reinforced composites displayed higher strain at failure. In any case, for the same fiber load (30 wt%), the Young's modulus of PLA/hemp biocomposites was greater than that of glass fiber (GF)-reinforced polypropylene (5.7 GPa), albeit lower than that of PLA/GF (9.8 GPa). Considering all the measurements, the contribution of each phase was analyzed by applying the Hirsch model and the Tsai-Pagano model. As a concluding remark, although the intrinsic tensile modulus of SBHFs was lower than that of GF, the efficiency of those natural fibers as reinforcement (according to the rule of mixtures) was found to be higher.

7.
Sci Total Environ ; 874: 162482, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36858230

RESUMO

Cellulose micro- and nanofibers (CNFs) are commonly regarded as "greener" than petro-based materials. The high energy input that their production still demands, along with the use of chemicals or heat in some pretreatments, asks for a critical view. This paper attempts a life cycle assessment of CNFs produced from bleached hardwood kraft pulp via three different pre-treatments before mechanical homogenization. First, a fully mechanical route, based on a Valley beating pre-treatment. Second, an enzymatic route, based on endoglucanases and requiring certain temperature (~50 °C). Third, a TEMPO-mediated oxidation route, considering not only the impact of the chemical treatment itself but also the production of TEMPO from ammonia and acetone. The main output of the study is that both, mechanical and TEMPO-mediated oxidation routes, present lower impacts than the enzymatic pre-treatment. Although the mechanical route presents slightly milder contributions to climate change, acidification, eutrophication, and other indicators, saying that TEMPO-mediated oxidation is environmentally unfeasible should be put under question. After all, and despite being disregarded in most assessment publications up to date, it is the only well-known way to selectively oxidize primary hydroxyl groups and thus producing kinds of CNFs that are unthinkable by other ways.


Assuntos
Celulose , Nanofibras , Animais , Oxirredução , Tecnologia
8.
Polymers (Basel) ; 15(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36850185

RESUMO

Composites from polypropylene (PP) reinforced with hemp strands (HS) are prepared in the current work with the aim of deepening on the influence of this reinforcement on the impact performance of these specific composites. Despite all the research conducted in this field, the effect of this natural reinforcement on the absorbed energy during crack formation and propagation is not fully tackled in previous research works. From the methodology and samples' geometry, the results concluded that the quality of the interface has a noticeable role in the impact resistance of these materials. The interface strength, fiber dispersion and fiber pullout are the main contributors to crack formation, whereas fiber pullout is the main one responsible for crack propagation. Maximum values of absorbed energy were found for PP composites comprising 20-30 wt% of HS and 8 wt% of the coupling agent for the un-notched samples, whereas maximum absorbed energy values corresponded to PP composites with 40 wt% of HS and 4 wt% of coupling agent for the notched samples. The water-absorption behavior in different humid environments is also examined. From the kinetic study, the water diffusion followed a Fickean behavior showing low-diffusion coefficients, increasing with fiber content. This systematic investigation represents a contribution to the analysis of the potential of reinforcing conventional polymers with natural materials, as a strategy towards more sustainable development.

9.
ACS Appl Mater Interfaces ; 15(9): 12580-12589, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36821826

RESUMO

The use of dithizone (DTZ) for colorimetric heavy-metal detection is approximately one century old. However, its pending stability issues and the need for simple indicators justify further research. Using cellulose nanofibers, we attained DTZ-containing emulsions with high stability. These emulsions had water (at least 95 wt %) and acetic acid (1-8 mL/L) conforming the continuous phase, while dispersed droplets of diameter <1 µm contained chloroform-solvated DTZ (3 wt %). The solvation cluster was computed by molecular dynamics simulations, suggesting that chloroform slightly reduces the dihedral angle between the two sides of the thiocarbazone chain. Nanocellulose concentrations over 0.2 wt % sufficed to obtain macroscopically homogeneous mixtures with no phase separation. Furthermore, the rate of degradation of DTZ in the nanocellulose-stabilized emulsion did not differ significantly from a DTZ/chloroform solution, outperforming DTZ/toluene and DTZ/acetonitrile. Not only is the emulsion readily and immediately responsive to mercury(II), but it also decreases interferences from other ions and from natural samples. Unexpectedly, neither lead(II) nor cadmium(II) triggered a visual response at trace concentrations. The limit of detection of these emulsions is 15 µM or 3 mg/L, exceeding WHO limits for mercury(II) in drinking water, but they could be effective at raising alarms.

10.
Polymers (Basel) ; 15(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679252

RESUMO

The growing demand for plant fiber-reinforced composites offers new opportunities to compete against glass fiber (GF)-reinforced composites, but their performance must be assessed, revised, and improved as much as possible. This work reports on the production and the flexural strength of composites from polypropylene (PP) and hemp strands (20-50 wt.%), using maleic anhydride-grafted PP (MAPP) as a compatibilizer. A computational assessment of the reaction between cellulose and MAPP suggested the formation of only one ester bond per maleic anhydride unit as the most stable product. We determined the most favorable MAPP dosage to be 0.06 g per gram of fiber. The maximum enhancement in flexural strength that was attained with this proportion of MAPP was 148%, corresponding to the maximum fiber load. The modified rule of mixtures and the assumption of similar coupling factors for tensile and flexural strength allowed us to estimate the intrinsic flexural strength of hemp strands as 953 ± 116 MPa. While falling short of the values for sized GF (2415 MPa), the reinforcement efficiency parameter of the natural fibers (0.209) was found to be higher than that of GF (0.045).

11.
Nanomaterials (Basel) ; 12(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500912

RESUMO

Measurements of nanocellulose size usually demand very high-resolution techniques and tedious image processing, mainly in what pertains to the length of nanofibers. Aiming to ease the process, this work assesses a relatively simple method to estimate the dimensions of nanocellulose particles with an aspect ratio greater than 1. Nanocellulose suspensions, both as nanofibers and as nanocrystals, are subjected to dynamic light scattering (DLS) and to field-emission scanning electron microscopy (FE-SEM). The former provides the hydrodynamic diameter, as long as the scatter angle and the consistency are adequate. Assays with different angles and concentrations compel us to recommend forward scattering (12.8°) and concentrations around 0.05-0.10 wt %. Then, FE-SEM with magnifications of ×5000-×20,000 generally suffices to obtain an acceptable approximation for the actual diameter, at least for bundles. Finally, length can be estimated by a simple geometric relationship. Regardless of whether they are collected from FE-SEM or DLS, size distributions are generally skewed to lower diameters. Width distributions from FE-SEM, in particular, are well fitted to log-normal functions. Overall, while this method is not valid for the thinnest fibrils or for single, small nanocrystals, it can be useful in lieu of very high-resolution techniques.

12.
Polymers (Basel) ; 14(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501573

RESUMO

The development of new materials is currently focused on replacing fossil-based plastics with sustainable materials. Obtaining new bioplastics that are biodegradable and of the greenest possible origin could be a great alternative for the future. However, there are some limitations-such as price, physical properties, and mechanical properties-of these bioplastics. In this sense, the present work aims to explore the potential of lignin present in black liquor from paper pulp production as the main component of a new plastic matrix. For this purpose, we have studied the simple recovery of this lignin using acid precipitation, its thermoplastification with glycerin as a plasticizing agent, the production of blends with poly(caprolactone) (PCL), and finally the development of biocomposite materials reinforcing the blend of thermoplastic lignin and PCL with stone groundwood fibers (SGW). The results obtained show that thermoplastic lignin alone cannot be used as a bioplastic. However, its combination with PCL provided a tensile strength of, e.g., 5.24 MPa in the case of a 50 wt.% blend. In addition, when studying the properties of the composite materials, it was found that the tensile strength of a blend with 20 wt.% PCL increased from 1.7 to 11.2 MPa with 40 wt.% SGW. Finally, it was proven that through these biocomposites it is possible to obtain a correct fiber-blend interface.

13.
Nanomaterials (Basel) ; 12(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36296865

RESUMO

Food packaging manufacturers often resort to lamination, typically with materials which are neither non-biodegradable nor biobased polymers, to confer barrier properties to paper and cardboard. The present work considers a greener solution: enhancing paper's resistance to moisture, grease, and air by aqueous coating suspensions. For hydrophobization, a combined approach between nanocellulose and common esterifying agents was considered, but the water vapor transmission rate (WVTR) remained excessively high for the goal of wrapping moisture-sensitive products (>600 g m−2 d−1). Nonetheless, oil-repellant surfaces were effectively obtained with nanocellulose, illite, sodium alginate, and/or poly(vinyl alcohol) (PVA), reaching Kit ratings up to 11. Regarding air resistance, mineral-rich coatings attained values above 1000 Gurley s. In light of these results, nanocellulose, minerals, PVA, pullulan, alginate, and a non-ionic surfactant were combined for multi-purpose coating formulations. It is hypothesized that these materials decrease porosity while complementing each other's flaws, e.g., PVA succeeds at decreasing porosity but has low dimensional stability. As an example, a suspension mostly constituted by nanocellulose, sizing agents, minerals and PVA yielded a WVTR of roughly 100 g m−2 d−1, a Kit rating of 12, and an air resistance above 300 s/100 mL. This indicates that multi-purpose coatings can be satisfactorily incorporated into paper structures for food packaging applications, although not as the food contact layer.

14.
Nanomaterials (Basel) ; 12(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014716

RESUMO

The use of micro-/nanofibrillated celluloses (M/NFCs) is often considered for the enhancement of paper properties, while it is still challenging to use them in lower weight gain coatings. This work explores how they might be used on the paper surface to improve the printing quality. In this regard, M/NFCs were produced using different pre-treatment methods, including mechanical (m-MFC), enzymatic (e-MFC), TEMPO-mediated oxidation (t-NFC) and cationization (c-NFC), and uniform coating formulations were developed through the cooking of starch and M/NFCs simultaneously. The formulations, at 6-8% of total solid concentration, were applied to the paper surface by roll coating, resulting in a dry coating weight of 1.5 to 3 g/m2. Besides M/NFCs, other components such as starch betainate (a cationic starch ester; SB), Pluronics® (a triblock co-polymer), precipitated calcium carbonate (PCC) and betaine hydrochloride (BetHCl) were also used in the M/NFC-based coating formulations to observe their combined influence on the printing quality. The presence of M/NFCs improved the paper printing quality, which was further enhanced by the increase in cationic charge density due to the presence of BetHCl/SB, and also by Pluronics®. The cationic charge of c-NFC was also found to be effective for improving the gamut area and optical density of coated papers, whereas whiteness was often reduced due to the quenching of the brightening agent. BetHCl, on the other hand, improved the printing quality of the coated papers, even though it was more effective when combined with M/NFCs, PCC and Pluronics®, and also helped to retain paper whiteness.

15.
Molecules ; 27(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35566254

RESUMO

Although it is well-known that nitroaromatic compounds quench the fluorescence of different conjugated polymers and form colored Meisenheimer complexes with proper nucleophiles, the potential of paper as a substrate for those macromolecules can be further developed. This work undertakes this task, impregnating paper strips with a fluorene-phenylene copolymer with quaternary ammonium groups, a bisfluorene-based cationic polyelectrolyte, and poly(2-(dimethylamino)ethyl methacrylate) (polyDMAEMA). Cationic groups make the aforementioned polyfluorenes attachable to paper, whose surface possesses a slightly negative charge and avoid interference from cationic quenchers. While conjugated polymers had their fluorescence quenched with nitroaromatic vapors in a non-selective way, polyDMAEMA-coated papers had a visual response that was selective to 2,4,6-trinitrotoluene (TNT), and that could be easily identified, and even quantified, under natural light. Far from implying that polyfluorenes should be ruled out, it must be taken into account that TNT-filled mines emit vapors from 2,4-dinitrotoluene (DNT) and dinitrobenzene isomers, which are more volatile than TNT itself. Atmospheres with only 790 ppbv TNT or 277 ppbv DNT were enough to trigger a distinguishable response, although the requirement for certain exposure times is an important limitation.


Assuntos
Substâncias Explosivas , Trinitrotolueno , Aminas , Dinitrobenzenos , Substâncias Explosivas/química , Gases , Polímeros/química
16.
Nanomaterials (Basel) ; 12(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35564321

RESUMO

The current trends in micro-/nanofibers offer a new and unmissable chance for the recovery of cellulose from non-woody crops. This work assesses a technically feasible approach for the production of micro- and nanofibrillated cellulose (MNFC) from jute, sisal and hemp, involving refining and enzymatic hydrolysis as pretreatments. Regarding the latter, only slight enhancements of nanofibrillation, transparency and specific surface area were recorded when increasing the dose of endoglucanases from 80 to 240 mg/kg. This supports the idea that highly ordered cellulose structures near the fiber wall are resistant to hydrolysis and hinder the diffusion of glucanases. Mechanical MNFC displayed the highest aspect ratio, up to 228 for hemp. Increasing the number of homogenization cycles increased the apparent viscosity in most cases, up to 0.14 Pa·s at 100 s-1 (1 wt.% consistency). A shear-thinning behavior, more marked for MNFC from jute and sisal, was evidenced in all cases. We conclude that, since both the raw material and the pretreatment play a major role, the unique characteristics of non-woody MNFC, either mechanical or enzymatically pretreated (low dose), make it worth considering for large-scale processes.

17.
Chem Zvesti ; 76(7): 4497-4507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431412

RESUMO

Abstract: Tissue paper was the only paper grade whose consumption increased during 2020 in Europe. In a highly competitive context, this work explores a strategy based on bisacrylamide cross-linkers and poly(vinyl alcohol) (PVA), seeking to enhance the water uptake of pulps for tissue paper and the key properties of the resulting tissue sheets: water absorption capacity, capillarity, softness, porosity, and strength. For that, α-cellulose from cotton and a kraft hardwood pulp, in parallel, were reacted with N,N'-methylenebisacrylamide, both in the absence and in the presence of PVA. The water desorption rate of the modified polymers was monitored. Pulp blends were then mixed with a conventional softwood pulp (30%) to prepare laboratory tissue paper sheets (20 g m-2). For cotton cellulose, cross-linking with PVA more than doubled the water uptake, up to 7.3 g/g. A significant enhancement was also obtained in the case of pulps, up to 9.6 g/g, and in the case of paper, to 11.9 g/g. This improvement was consistent with a drastic increase in porosity, and it was not detrimental to paper strength.

18.
ACS Omega ; 7(9): 7625-7637, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35284759

RESUMO

One of the main products of pyrolysis is char. For the better performance and improvement of its physicochemical properties, it is necessary to make temperature changes. In this study, different temperatures have been tested for the pyrolysis of rice husk, and the biochar obtained from the process went through an evaluation to test its yield in the removal of emerging compounds such as azithromycin (AZT) and erythromycin (ERY). For this, pyrolysis of rice husk has been carried out at temperatures of 450, 500, 550, and 600 °C, and the biochars have been characterized by ultimate analysis and proximate analysis, as well as specific surface area tests. Then, different adsorption tests have been carried out with a 200 mg L-1 drug (AZT and ERY) solution prepared in the laboratory. All biochars have been found to present removal percentages higher than 95%. Therefore, obtaining biochar from rice husk at any temperature and using it in the removal of high-molecular-weight compounds are quite suitable.

19.
Polymers (Basel) ; 15(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616497

RESUMO

The compatibility between poly(lactic acid) (PLA) and natural fibers to develop bio-sourced, recyclable, and biodegradable composites remains a commonplace issue. This work highlights that, at least in the case of hemp, pulping and bleaching towards delignified short fibers attained remarkable improvements over untreated hemp strands. This approach differs from usual proposals of chemically modifying hydroxyl groups. Soda-bleached hemp fibers (SBHFs) granted a relatively large bonding surface area and a satisfactory quality of the interphase, even in the absence of any dispersant or compatibilizer. To attain satisfactory dispersion, the matrix and the fibers were subjected to kinetic mixing and to a moderately intensified extrusion process. Then, dog-bone specimens were prepared by injection molding. Up to a fiber content of 30 wt.%, the tensile strength increased linearly with the volume fraction of the dispersed phase. It reached a maximum value of 77.8 MPa, signifying a relative enhancement of about 52%. In comparison, the tensile strength for PLA/hemp strands was 55.7 MPa. Thence, based on the modified rule of mixtures and the Kelly & Tyson modified equation, we analyzed this performance at the level of the constituent materials. The interfacial shear strength (over 28 MPa) and other micromechanical parameters were computed. Overall, this biocomposite was found to outperform a polypropylene/sized glass fiber composite (without coupling agent) in terms of tensile strength, while fulfilling the principles of green chemistry.

20.
ACS Appl Mater Interfaces ; 13(50): 60454-60461, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34874716

RESUMO

The synthesis and preparation of 12 chromogenic polymers used to build an intelligent label for security paper applications are described. The process involves coating paper sheets with the polymers. Depending on the number of different polymers used in a combinatory way, a maximum of 1212 combinations is possible, thus creating a matrix that is practically impossible to counterfeit. Currently, most anticounterfeiting proposals for paper-based packaging and documents involve some sort of verification under ultraviolet radiation, and the requirement of additional equipment often relegates the end-user to a passive role. In contrast, in our approach, the combination of sensory polymers in an array gives rise to an invisible label, i.e., an owner cryptographic key, which becomes visible upon scattering a nitrite solution (e.g., spraying or using an impregnated foam roller) over the printed label on the security paper. For this purpose, a monomer containing an aromatic primary amino group and another with an activated aromatic ring are covalently bonded to a polymer with high affinity toward paper, consisting essentially of units of methyl methacrylate and 1-vinyl-2-pyrrolidone. Subsequently, the paper samples are coated with the resulting sensory chromogenic polymer. By spraying, painting, or staining an aqueous acid solution of NaNO2 (at least 1.20 g/L) and the chromogenic polymers, a well-defined color appears, because of the formation of an azo compound. This process provides users with a quick and facile authentication method without additional equipment and without affecting paper strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA