Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Invest ; 130(2): 699-714, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31845908

RESUMO

HSP27 is highly expressed in, and supports oncogene addiction of, many cancers. HSP27 phosphorylation is a limiting step for activation of this protein and a target for inhibition, but its highly disordered structure challenges rational structure-guided drug discovery. We performed multistep biochemical, structural, and computational experiments to define a spherical 24-monomer complex composed of 12 HSP27 dimers with a phosphorylation pocket flanked by serine residues between their N-terminal domains. Ivermectin directly binds this pocket to inhibit MAPKAP2-mediated HSP27 phosphorylation and depolymerization, thereby blocking HSP27-regulated survival signaling and client-oncoprotein interactions. Ivermectin potentiated activity of anti-androgen receptor and anti-EGFR drugs in prostate and EGFR/HER2-driven tumor models, respectively, identifying a repurposing approach for cotargeting stress-adaptive responses to overcome resistance to inhibitors of oncogenic pathway signaling.


Assuntos
Proteínas de Choque Térmico , Ivermectina , Chaperonas Moleculares , Neoplasias Experimentais , Receptor ErbB-2 , Células A549 , Animais , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ivermectina/química , Ivermectina/farmacologia , Camundongos , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Domínios Proteicos , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
2.
PLoS One ; 12(10): e0186869, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29088253

RESUMO

Cathepsin K (CatK) is a cysteine protease that plays an important role in mammalian intra- and extracellular protein turnover and is known for its unique and potent collagenase activity. Through studies on the mechanism of its collagenase activity, selective ectosteric sites were identified that are remote from the active site. Inhibitors targeting these ectosteric sites are collagenase selective and do not interfere with other proteolytic activities of the enzyme. Potential ectosteric inhibitors were identified using a computational approach to screen the druggable subset of and the entire 281,987 compounds comprising Chemical Repository library of the National Cancer Institute-Developmental Therapeutics Program (NCI-DTP). Compounds were scored based on their affinity for the ectosteric site. Here we compared the scores of three individual molecular docking methods with that of a composite score of all three methods together. The composite docking method was up to five-fold more effective at identifying potent collagenase inhibitors (IC50 < 20 µM) than the individual methods. Of 160 top compounds tested in enzymatic assays, 28 compounds revealed blocking of the collagenase activity of CatK at 100 µM. Two compounds exhibited IC50 values below 5 µM corresponding to a molar protease:inhibitor concentration of <1:12. Both compounds were subsequently tested in osteoclast bone resorption assays where the most potent inhibitor, 10-[2-[bis(2-hydroxyethyl)amino]ethyl]-7,8-diethylbenzo[g]pteridine-2,4-dione, (NSC-374902), displayed an inhibition of bone resorption with an IC50-value of approximately 300 nM and no cell toxicity effects.


Assuntos
Catepsina K/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Simulação de Acoplamento Molecular/métodos , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Domínio Catalítico , Catepsina K/química , Catepsina K/metabolismo , Células Cultivadas , Colagenases/química , Colagenases/metabolismo , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/metabolismo , Humanos , Estrutura Molecular , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Ligação Proteica , Domínios Proteicos
3.
Biochem J ; 474(5): 851-864, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28049758

RESUMO

Cathepsin K (CatK) is the predominant mammalian bone-degrading protease and thus an ideal target for antiosteoporotic drug development. Rodent models of osteoporosis are preferred due to their close reflection of the human disease and their ease of handling, genetic manipulation and economic affordability. However, large differences in the potency of CatK inhibitors for the mouse/rat vs. the human protease orthologs have made it impossible to use rodent models. This is even more of a problem considering that the most advanced CatK inhibitors, including odanacatib (ODN) and balicatib, failed in human clinical trials due to side effects and rodent models are not available to investigate the mechanism of these failures. Here, we elucidated the structural elements of the potency differences between mouse and human CatK (hCatK) using ODN. We determined and compared the structures of inhibitor-free mouse CatK (mCatK), hCatK and ODN bound to hCatK. Two structural differences were identified and investigated by mutational analysis. Humanizing subsite 2 in mCatK led to a 5-fold improvement of ODN binding, whereas the replacement of Tyr61 in mCatK with Asp resulted in an hCatK with comparable ODN potency. Combining both sites further improved the inhibition of the mCatK variant. Similar results were obtained for balicatib. These findings will allow the generation of transgenic CatK mice that will facilitate the evaluation of CatK inhibitor adverse effects and to explore routes to avoid them.


Assuntos
Benzamidas/química , Compostos de Bifenilo/química , Conservadores da Densidade Óssea/química , Catepsina K/antagonistas & inibidores , Piperazinas/química , Inibidores de Proteases/química , Sequência de Aminoácidos , Animais , Benzamidas/metabolismo , Sítios de Ligação , Compostos de Bifenilo/metabolismo , Conservadores da Densidade Óssea/metabolismo , Catepsina K/química , Catepsina K/genética , Catepsina K/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Cinética , Ligantes , Camundongos , Mutagênese Sítio-Dirigida , Piperazinas/metabolismo , Inibidores de Proteases/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína
4.
J Nat Prod ; 79(8): 1962-70, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27498895

RESUMO

Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.


Assuntos
Produtos Biológicos/farmacologia , Catepsina K/antagonistas & inibidores , Líquens/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Antipaína/química , Antipaína/farmacologia , Produtos Biológicos/síntese química , Produtos Biológicos/química , Colúmbia Britânica , Cristalografia por Raios X , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química
5.
ACS Cent Sci ; 2(3): 154-161, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27066537

RESUMO

Selective inhibitors of human pancreatic α-amylase (HPA) are an effective means of controlling blood sugar levels in the management of diabetes. A high-throughput screen of marine natural product extracts led to the identification of a potent (Ki = 10 pM) peptidic HPA inhibitor, helianthamide, from the Caribbean sea anemone Stichodactyla helianthus. Active helianthamide was produced in Escherichia coli via secretion as a barnase fusion protein. X-ray crystallographic analysis of the complex of helianthamide with porcine pancreatic α-amylase revealed that helianthamide adopts a ß-defensin fold and binds into and across the amylase active site, utilizing a contiguous YIYH inhibitory motif. Helianthamide represents the first of a novel class of glycosidase inhibitors and provides an unusual example of functional malleability of the ß-defensin fold, which is rarely seen outside of its traditional role in antimicrobial peptides.

6.
Proc Natl Acad Sci U S A ; 111(49): 17474-9, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422423

RESUMO

Cathepsin K is the major collagenolytic protease in bone that facilitates physiological as well as pathological bone degradation. Despite its key role in bone remodeling and for being a highly sought-after drug target for the treatment of osteoporosis, the mechanism of collagen fiber degradation by cathepsin K remained elusive. Here, we report the structure of a collagenolytically active cathepsin K protein dimer. Cathepsin K is organized into elongated C-shaped protease dimers that reveal a putative collagen-binding interface aided by glycosaminoglycans. Molecular modeling of collagen binding to the dimer indicates the participation of nonactive site amino acid residues, Q21 and Q92, in collagen unfolding. Mutations at these sites as well as perturbation of the dimer protein-protein interface completely inhibit cathepsin-K-mediated fiber degradation without affecting the hydrolysis of gelatin or synthetic peptide. Using scanning electron microscopy, we demonstrate the specific binding of cathepsin K at the edge of the fibrillar gap region of collagen fibers, which suggest initial cleavage events at the N- and C-terminal ends of tropocollagen molecules. Edman degradation analysis of collagen fiber degradation products revealed those initial cleavage sites. We propose that one cathepsin K molecule binds to collagen-bound glycosaminoglycans at the gap region and recruits a second protease molecule that provides an unfolding and cleavage mechanism for triple helical collagen. Removal of collagen-associated glycosaminoglycans prevents cathepsin K binding and subsequently fiber hydrolysis. Cathepsin K dimer and glycosaminoglycan binding sites represent novel targeting sites for the development of nonactive site-directed second-generation inhibitors of this important drug target.


Assuntos
Catepsina K/química , Colágeno/química , Aminoácidos/química , Sítios de Ligação , Remodelação Óssea , Osso e Ossos/metabolismo , Cristalografia por Raios X , Glicosaminoglicanos/química , Humanos , Hidrólise , Microscopia Eletrônica , Modelos Moleculares , Mutagênese , Osteoporose , Peptídeo Hidrolases/química , Pichia , Desnaturação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
7.
PLoS One ; 9(7): e103598, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25072253

RESUMO

Due to the emergence of resistance toward current antibiotics, there is a pressing need to develop the next generation of antibiotics as therapeutics against infectious and opportunistic diseases of microbial origins. The shikimate pathway is exclusive to microbes, plants and fungi, and hence is an attractive and logical target for development of antimicrobial therapeutics. The Gram-positive commensal microbe, Enterococcus faecalis, is a major human pathogen associated with nosocomial infections and resistance to vancomycin, the "drug of last resort". Here, we report the identification of several polyketide-based inhibitors against the E. faecalis shikimate pathway enzyme, 3-dehydroquinate dehydratase (DHQase). In particular, marein, a flavonoid polyketide, both inhibited DHQase and retarded the growth of Enterococcus faecalis. The purification, crystallization and structural resolution of recombinant DHQase from E. faecalis (at 2.2 Å resolution) are also reported. This study provides a route in the development of polyketide-based antimicrobial inhibitors targeting the shikimate pathway of the human pathogen E. faecalis.


Assuntos
Enterococcus faecalis/enzimologia , Inibidores Enzimáticos/química , Hidroliases/antagonistas & inibidores , Ácido Chiquímico/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Enterococcus faecalis/metabolismo , Inibidores Enzimáticos/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Hidroliases/genética , Hidroliases/metabolismo , Cinética , Policetídeos/química , Policetídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ácido Chiquímico/química
8.
Nat Struct Mol Biol ; 17(4): 497-503, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20357771

RESUMO

Capping protein (CP) regulates actin dynamics by binding the barbed ends of actin filaments. Removal of CP may be one means to harness actin polymerization for processes such as cell movement and endocytosis. Here we structurally and biochemically investigated a CP interaction (CPI) motif present in the otherwise unrelated proteins CARMIL and CD2AP. The CPI motif wraps around the stalk of the mushroom-shaped CP at a site distant from the actin-binding interface, which lies on the top of the mushroom cap. We propose that the CPI motif may act as an allosteric modulator, restricting CP to a low-affinity, filament-binding conformation. Structure-based sequence alignments extend the CPI motif-containing family to include CIN85, CKIP-1, CapZIP and a relatively uncharacterized protein, WASHCAP (FAM21). Peptides comprising these CPI motifs are able to inhibit CP and to uncap CP-bound actin filaments.


Assuntos
Proteínas de Capeamento de Actina/química , Proteínas de Capeamento de Actina/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
9.
J Struct Biol ; 162(3): 491-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18467126

RESUMO

This research describes four X-ray structures of Vibrio harveyi chitinase A and its catalytically inactive mutant (E315M) in the presence and absence of substrates. The overall structure of chitinase A is that of a typical family-18 glycosyl hydrolase comprising three distinct domains: (i) the amino-terminal chitin-binding domain; (ii) the main catalytic (alpha/beta)(8) TIM-barrel domain; and (iii) the small (alpha+beta) insertion domain. The catalytic cleft of chitinase A has a long, deep groove, which contains six chitooligosaccharide ring-binding subsites (-4)(-3)(-2)(-1)(+1)(+2). The binding cleft of the ligand-free E315M is partially blocked by the C-terminal (His)(6)-tag. Structures of E315M-chitooligosaccharide complexes display a linear conformation of pentaNAG, but a bent conformation of hexaNAG. Analysis of the final 2F(o)-F(c) omit map of E315M-NAG6 reveals the existence of the linear conformation of the hexaNAG at a lower occupancy with respect to the bent conformation. These crystallographic data provide evidence that the interacting sugars undergo conformational changes prior to hydrolysis by the wild-type enzyme.


Assuntos
Quitinases/química , Oligossacarídeos/química , Sítios de Ligação , Catálise , Domínio Catalítico , Quitina/química , Clonagem Molecular , Cristalografia por Raios X/métodos , Hidrólise , Conformação Molecular , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Vibrio/enzimologia
10.
Structure ; 14(3): 469-76, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16531231

RESUMO

Participation of actin in cellular processes relies on the dynamics of filament assembly. Filament elongation is fed by monomeric actin in complex with either profilin or a Wiscott-Aldrich syndrome protein (WASP) homology domain 2 (WH2)/beta-thymosin (betaT) domain. WH2/betaT motif repetition (typified by ciboulot) or combination with nonrelated domains (as found in N-WASP) results in proteins that yield their actin to filament elongation. Here, we report the crystal structures of actin bound hybrid proteins, constructed between gelsolin and WH2/betaT domains from ciboulot or N-WASP. We observe the C-terminal half of ciboulot domain 2 bound to actin. In solution, we show that cibolout domains 2 and 3 bind to both G- and F-actin, and that whole ciboulot forms a complex with two actin monomers. In contrast, the analogous portion of N-WASP WH2 domain 2 is detached from actin, indicating that the C-terminal halves of the betaT and WH2 motifs are not functionally analogous.


Assuntos
Actinas/metabolismo , Proteínas de Drosophila/química , Gelsolina/química , Proteínas dos Microfilamentos/química , Proteínas do Tecido Nervoso/química , Timosina/química , Proteína da Síndrome de Wiskott-Aldrich/química , Actinas/química , Sequência de Aminoácidos , Animais , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Timosina/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
11.
EMBO Rep ; 6(3): 220-6, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15741975

RESUMO

Movement is a defining characteristic of life. Macroscopic motion is driven by the dynamic interactions of myosin with actin filaments in muscle. Directed polymerization of actin behind the advancing membrane of a eukaryotic cell generates microscopic movement. Despite the fundamental importance of actin in these processes, the structure of the actin filament remains unknown. The Holmes model of the actin filament was published 15 years ago, and although it has been widely accepted, no high-resolution structural data have yet confirmed its veracity. Here, we review the implications of recently determined structures of F-actin-binding proteins for the structure of the actin filament and suggest a series of in silico tests for actin-filament models. We also review the significance of these structures for the arp2/3-mediated branched filament.


Assuntos
Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Proteína 2 Relacionada a Actina , Proteína 3 Relacionada a Actina , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Ligação Proteica , Conformação Proteica
12.
EMBO J ; 23(18): 3599-608, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15329672

RESUMO

The WH2 (Wiscott-Aldridge syndrome protein homology domain 2) repeat is an actin interacting motif found in monomer sequestering and filament assembly proteins. We have stabilized the prototypical WH2 family member, thymosin-beta4 (Tbeta4), with respect to actin, by creating a hybrid between gelsolin domain 1 and the C-terminal half of Tbeta4 (G1-Tbeta4). This hybrid protein sequesters actin monomers, severs actin filaments and acts as a leaky barbed end cap. Here, we present the structure of the G1-Tbeta4:actin complex at 2 A resolution. The structure reveals that Tbeta4 sequesters by capping both ends of the actin monomer, and that exchange of actin between Tbeta4 and profilin is mediated by a minor overlap in binding sites. The structure implies that multiple WH2 motif-containing proteins will associate longitudinally with actin filaments. Finally, we discuss the role of the WH2 motif in arp2/3 activation.


Assuntos
Actinas/química , Timosina/química , Proteína 2 Relacionada a Actina , Proteína 3 Relacionada a Actina , Actinas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Cristalografia por Raios X , Proteínas do Citoesqueleto/química , Citoesqueleto/metabolismo , Gelsolina/química , Gelsolina/genética , Gelsolina/metabolismo , Humanos , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Timosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA