Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Genes (Basel) ; 15(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39062675

RESUMO

This study sought to assess how post-game creatine kinase (CK) levels correlate with the number of sprints and the impact of the ACTN3 polymorphism on this response. This research constituted a descriptive/observational, retrospective cross-sectional study. DNA was extracted from blood samples for ACTN3 polymorphism genotyping. CK was measured 48 h after official matches, and the number of sprints (>19 km/h) was tracked using Global Positioning System (GPS) technology. The main cohort included 23 professional soccer players from the top tier of the Brazilian Championship. We analyzed 115 GPS + CK data sets. The replication cohort comprised 18 professional soccer players from the First Division of the Championship, had the same methodology applied, and featured a total of 90 GPS (sprints > 25.2 km/h) + CK data sets. For the main cohort, a significant positive correlation was seen between the number of sprints and the CK levels (p = 0.009). Athletes with the ACTN3 RR genotype had higher CK levels as more sprints were performed during the match (p = 0.017). However, the relationship was not found for X allele carriers (p > 0.05). For the replication cohort, there was a near-significant correlation between CK levels and the number of sprints (p = 0.05), and RR individuals showed a significant association (p = 0.01), whereas X allele carriers did not (p = 0.06). A greater number of sprints during matches is linked to higher CK levels, primarily among players with the ACTN3 RR genotype, which is potentially due to an increased presence of type II muscle fibers. These findings were replicated for both cohorts of elite Brazilian soccer players, emphasizing the importance of genetic factors in injury prevention.


Assuntos
Actinina , Creatina Quinase , Corrida , Futebol , Humanos , Actinina/genética , Brasil , Masculino , Creatina Quinase/sangue , Creatina Quinase/genética , Adulto , Atletas , Desempenho Atlético , Estudos Transversais , Estudos Retrospectivos , Genótipo , Polimorfismo de Nucleotídeo Único , Adulto Jovem , Polimorfismo Genético
2.
Front Pharmacol ; 15: 1390187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860172

RESUMO

Introduction: Caffeine and the selective A2A receptor antagonist SCH58261 both have ergogenic properties, effectively reducing fatigue and enhancing exercise capacity. This study investigates in male Swiss mice the interaction between adenosine A2A receptors and dopamine D2 receptors controlling central fatigue, with a focus on the striatum where these receptors are most abundant. Methods: We employed DPCPX and SCH58261 to antagonize A1 and A2A receptors, caffeine as a non-competitive antagonist for both receptors, and haloperidol as a D2 receptor antagonist; all compounds were tested upon systemic application and caffeine and SCH58261 were also directly applied in the striatum. Behavioral assessments using the open field, grip strength, and treadmill tests allowed estimating the effect of treatments on fatigue. Results and discussion: The results suggested a complex interplay between the dopamine and adenosine systems. While systemic DPCPX had little effect on motor performance or fatigue, the application of either caffeine or SCH58261 was ergogenic, and these effects were attenuated by haloperidol. The intra-striatal administration of caffeine or SCH58261 was also ergogenic, but these effects were unaffected by haloperidol. These findings confirm a role of striatal A2A receptors in the control of central fatigue but suggest that the D2 receptor-mediated control of the ergogenic effects of caffeine and of A2A receptor antagonists might occur outside the striatum. This prompts the need of additional efforts to unveil the role of different brain regions in the control of fatigue.

3.
Am J Phys Med Rehabil ; 103(3): 194-202, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37816223

RESUMO

OBJECTIVE: This study aimed to investigate the effects of an 8-wk face-to-face rehabilitation program on subjects with persistent symptoms of COVID-19 compared with a remote monitoring group. DESIGN: This is clinical, nonrandomized, controlled, and open study. The face-to-face supervised rehabilitation lasted eight consecutive weeks, twice a week. The remote monitoring group received health guidance. The allocation was carried out by preference because of the emergency period without vaccination during the pandemic. Fatigue, dyspnea (Pulmonary Functional Status and Dyspnea Questionnaire), and exercise capacity (Incremental Shuttle Walk Test) were the primary outcome measures. Lung function, functional status (Post-COVID-19 Functional Status), symptoms of anxiety and depression (Hospital Anxiety and Depression Scale), attention (d2-R), memory (Rey's Auditory-Verbal Learning Test), handgrip strength, and knee extensor strength were secondary outcome measures. RESULTS: Thirty-seven subjects (24.3% hospitalized) completed the baseline and final assessment, rehabilitation ( n = 22, 40.8 [SD, 10.0] yrs, 54.5% female), or remote guidance ( n = 15, 45.4 [SD, 10.5] yrs, 40% female). Both groups showed improved fatigue and exercise capacity. Exercise rehabilitation improved dyspnea, anxiety, attention, and short-term memory. CONCLUSIONS: Rehabilitation is essential for dyspnea in subjects with persistent symptoms of COVID-19 while fatigue naturally reverses.


Assuntos
COVID-19 , Doença Pulmonar Obstrutiva Crônica , Feminino , Humanos , Masculino , Brasil/epidemiologia , COVID-19/complicações , Dispneia/etiologia , Tolerância ao Exercício , Fadiga/etiologia , Força da Mão , Doença Pulmonar Obstrutiva Crônica/reabilitação , Qualidade de Vida , Adulto , Pessoa de Meia-Idade
5.
Purinergic Signal ; 19(4): 673-683, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36697868

RESUMO

Caffeine is one of the main ergogenic resources used in exercise and sports. Previously, we reported the ergogenic mechanism of caffeine through neuronal A2AR antagonism in the central nervous system [1]. We now demonstrate that the striatum rules the ergogenic effects of caffeine through neuroplasticity changes. Thirty-four Swiss (8-10 weeks, 47 ± 1.5 g) and twenty-four C57BL/6J (8-10 weeks, 23.9 ± 0.4 g) adult male mice were studied behaviorly and electrophysiologically using caffeine and energy metabolism was studied in SH-SY5Y cells. Systemic (15 mg/kg, i.p.) or striatal (bilateral, 15 µg) caffeine was psychostimulant in the open field (p < 0.05) and increased grip efficiency (p < 0.05). Caffeine also shifted long-term depression (LTD) to potentiation (LTP) in striatal slices and increased the mitochondrial mass (p < 0.05) and membrane potential (p < 0.05) in SH-SY5Y dopaminergic cells. Our results demonstrate the role of the striatum in the ergogenic effects of caffeine, with changes in neuroplasticity and mitochondrial metabolism.


Assuntos
Estimulantes do Sistema Nervoso Central , Neuroblastoma , Substâncias para Melhoria do Desempenho , Humanos , Masculino , Camundongos , Animais , Cafeína/farmacologia , Camundongos Endogâmicos C57BL , Estimulantes do Sistema Nervoso Central/farmacologia
6.
Syst Rev ; 11(1): 98, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585640

RESUMO

BACKGROUND: Increased circulating endocannabinoids levels are typically associated with aerobic exercise. This phenomenon is associated with a "runner's high," a state of euphoria and well-being experienced after a long exercise. We will provide in this review a transparent and standardized methodology following the PRISMA-P and Cochrane Handbook for Systematic Reviews of Interventions for conducting a systematic review and meta-analysis for synthesizing the available evidence about the effects of physical activity on the circulating levels of AEA and 2-AG endocannabinoids in healthy subjects. METHODS: A multi-disciplinary team with basic and clinical expertise in exercise science developed this protocol. PubMed, EMBASE, Web of Science, CINAHL, SPORTDiscus, and Scopus will be the databases. A health sciences librarian was consulted in the development of the research. Search strategies will combine MeSH terms and free text words, including "exercise," "exercise, physical," "exercise training," "physical activity," "endocannabinoids," "2-arachidonoyl-glycerol," "glyceryl 2-arachidonate," "2-AG," "anandamide," "AEA," "n-arachidonoylethanolamide," "adult," "young adult," and "middle-aged." We will select experimental or quasi-experimental studies published through December 2021. The selection of studies, data extraction, assessment of the risk of bias, and the quality of evidence will be carried out in a paired and independent manner, and the consistency will be assessed using the statistics of Cohen Kappa. Methodological quality will be assessed using the Revised Cochrane risk of bias tool for randomized trials (RoB 2) and the Risk Of Bias In Nonrandomized Studies of Interventions (ROBINS-I) risk tool. We will use the Grading of Recommendations Assessment, Development, and Evaluation to assess the quality of the evidence, χ2 and I2 tests for heterogeneity, funnel plots, and the Egger test for publication bias. A meta-analysis for each data comparison will be performed whenever possible to determine the effect of physical activity on endocannabinoids' circulating levels. DISCUSSION: This systematic review and meta-analysis will provide an overview of the evidence about physical activity over AEA and 2-AG endocannabinoids, including comparability of variables between studies, critical interpretation of results, and use of accurate statistical techniques. The endocannabinoid is molecules by which muscles communicate with other tissues and organs, mediating the beneficial effects of exercise on health and performance, including increased glucose uptake, improved insulin action, and mitochondrial biogenesis. They are essential to exercise. Thus, this study will review the acute effect of physical exercise on circulating levels of endocannabinoids in healthy individuals. The results of this study will potentially be transferred to doctors, health professionals, and legislators to guide their decision making, as well as will improve future research. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020202886 .


Assuntos
Endocanabinoides , Exercício Físico , Humanos , Metanálise como Assunto , Pessoa de Meia-Idade , Literatura de Revisão como Assunto , Revisões Sistemáticas como Assunto , Adulto Jovem
7.
Purinergic Signal ; 17(3): 393-397, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216353

RESUMO

Ecto-5'-nucleotidase or CD73 is the main source of extracellular adenosine involved in the activation of adenosine A2A receptors, responsible for the ergogenic effects of caffeine. We now investigated the role of CD73 in exercise by comparing female wild-type (WT) and CD73 knockout (KO) mice in a treadmill-graded test to evaluate running power, oxygen uptake (V̇O2), and respiratory exchange ratio (RER) - the gold standards characterizing physical performance. Spontaneous locomotion in the open field and submaximal running power and V̇O2 in the treadmill were similar between CD73-KO and WT mice; V̇O2max also demonstrated equivalent aerobic power, but CD73-KO mice displayed a 43.7 ± 4.2% larger critical power (large effect size, P < 0.05) and 3.8 ± 0.4% increase of maximum RER (small effect size, P < 0.05). Thus, KO of CD73 was ergogenic; i.e., it increased physical performance.


Assuntos
5'-Nucleotidase/deficiência , 5'-Nucleotidase/genética , Teste de Esforço/métodos , Deleção de Genes , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Animais , Feminino , Camundongos , Camundongos Knockout
8.
Am J Physiol Regul Integr Comp Physiol ; 320(4): R541-R546, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33533311

RESUMO

Physical exercise attenuates the development of l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia (LID) in 6-hydroxydopamine-induced hemiparkinsonian mice through unknown mechanisms. We now tested if exercise normalizes the aberrant corticostriatal neuroplasticity associated with experimental murine models of LID. C57BL/6 mice received two unilateral intrastriatal injections of 6-hydroxydopamine (12 µg) and were treated after 3 wk with l-DOPA/benserazide (25/12.5 mg/kg) for 4 wk, with individualized moderate-intensity running (60%-70% V̇o2peak) or not (untrained). l-DOPA converted the pattern of plasticity in corticostriatal synapses from a long-term depression (LTD) into a long-term potentiation (LTP). Exercise reduced LID severity and decreased aberrant LTP. These results suggest that exercise attenuates abnormal corticostriatal plasticity to decrease LID.


Assuntos
Antiparkinsonianos/toxicidade , Córtex Cerebral/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Discinesia Induzida por Medicamentos/prevenção & controle , Terapia por Exercício , Levodopa/toxicidade , Plasticidade Neuronal/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Benserazida/toxicidade , Córtex Cerebral/fisiopatologia , Corpo Estriado/fisiopatologia , Di-Hidroxifenilalanina/análogos & derivados , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/fisiopatologia , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Corrida , Fatores de Tempo
9.
Sci Rep ; 10(1): 13414, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770138

RESUMO

Caffeine is one of the most used ergogenic aid for physical exercise and sports. However, its mechanism of action is still controversial. The adenosinergic hypothesis is promising due to the pharmacology of caffeine, a nonselective antagonist of adenosine A1 and A2A receptors. We now investigated A2AR as a possible ergogenic mechanism through pharmacological and genetic inactivation. Forty-two adult females (20.0 ± 0.2 g) and 40 male mice (23.9 ± 0.4 g) from a global and forebrain A2AR knockout (KO) colony ran an incremental exercise test with indirect calorimetry (V̇O2 and RER). We administered caffeine (15 mg/kg, i.p., nonselective) and SCH 58261 (1 mg/kg, i.p., selective A2AR antagonist) 15 min before the open field and exercise tests. We also evaluated the estrous cycle and infrared temperature immediately at the end of the exercise test. Caffeine and SCH 58621 were psychostimulant. Moreover, Caffeine and SCH 58621 were ergogenic, that is, they increased V̇O2max, running power, and critical power, showing that A2AR antagonism is ergogenic. Furthermore, the ergogenic effects of caffeine were abrogated in global and forebrain A2AR KO mice, showing that the antagonism of A2AR in forebrain neurons is responsible for the ergogenic action of caffeine. Furthermore, caffeine modified the exercising metabolism in an A2AR-dependent manner, and A2AR was paramount for exercise thermoregulation.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central , Substâncias para Melhoria do Desempenho , Condicionamento Físico Animal/fisiologia , Receptor A2A de Adenosina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Regulação da Temperatura Corporal/fisiologia , Cafeína/administração & dosagem , Ciclo Estral/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Knockout , Neurônios/fisiologia , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Pirimidinas/farmacologia , Triazóis/farmacologia
10.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165778, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32222542

RESUMO

Regular exercise induces a wide range of redox system-associated molecular adaptive responses to the nervous system. The intermittent induction of reactive oxygen species (ROS) during acute exercise sessions and the related upregulation of antioxidant/repair and housekeeping systems are associated with improved physiological function. Exercise-induced proliferation and differentiation of neuronal stem cells are ROS dependent processes. The increased production of brain derived neurotrophic factor (BDNF) and the regulation by regular exercise are dependent upon redox sensitive pathways. ROS are causative and associative factors of neurodegenerative diseases and regular exercise provides significant neuroprotective effects against Alzheimer's disease, Parkinson's disease, and hypoxia/reperfusion related disorders. Regular exercise regulates redox homeostasis in the brain with complex multi-level molecular pathways.


Assuntos
Exercício Físico/fisiologia , Doenças Neurodegenerativas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Homeostase , Humanos , Hipóxia/metabolismo , Hipóxia-Isquemia Encefálica , Isquemia/metabolismo , Neuroproteção/fisiologia , Oxirredução , Doença de Parkinson/metabolismo , Acidente Vascular Cerebral/metabolismo
12.
Antioxidants (Basel) ; 8(11)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698763

RESUMO

This review highlighted resistance training as an important training type for the brain. Most studies that use physical exercise for the prevention or treatment of neurodegenerative diseases have focused on aerobic physical exercise, revealing different behavioral, biochemical, and molecular effects. However, recent studies have shown that resistance training can also significantly contribute to the prevention of neurodegenerative diseases as well as to the maintenance, development, and recovery of brain activities through specific neurochemical adaptations induced by the training. In this scenario we observed the results of several studies published in different journals in the last 20 years, focusing on the effects of resistance training on three main neurological aspects: Neuroprotective mechanisms, oxidative stress, and cognition. Systematic database searches of PubMed, Web of Science, Scopus, and Medline were performed to identify peer-reviewed studies from the 2000s. Combinations of keywords related to brain disease, aerobic/resistance, or strength physical exercise were used. Other variables were not addressed in this review but should be considered for a complete understanding of the effects of training in the brain.

13.
Behav Brain Res ; 359: 648-656, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30287273

RESUMO

While chronic high-fat feeding has long been associated with the rising incidence of obesity/type 2 diabetes, recent evidence has established that it is also associated with deficits in hippocampus-dependent memory. In this regard, environmental enrichment (EE) is an animal housing technique composed of increased space, physical activity, and social interactions, which in turn increases sensory, cognitive, motor, and social stimulation. EE leads to improved cerebral health as defined by increased neurogenesis, enhanced learning and memory and resistance to external cerebral insults. In the present study, the impacts of environmental enrichment (EE) on Swiss mice fed a high-fat, cholesterol-enriched diet (HFECD; 20% fat and 1.5% cholesterol) were investigated. Here, we demonstrated that EE, when initiated 4 weeks after the beginning of HFECD in mice, prevents HFECD-induced spatial memory and object recognition impairment, which were tested in T-maze and object recognition tests. Although EE did not affect HFECD-induced weight gain or hypercholesterolaemia, it improved glucose tolerance. On the other hand, EE was unable to mitigate a decrease in brain-derived neurotrophic factor (BDNF) and IL-6 hippocampal levels induced by the HFECD. Overall, while our results reinforce the positive and neuroprotective effects of EE on cognition they do not support a role for EE in preventing the neurochemical changes induced by the HFECD. Based on clinical observations that nondiabetic individuals with mild forms of impaired glucose tolerance have a higher risk of cognitive impairments, one can speculate about the connection between the effects of EE on glucose intolerance and its effects on cognition.


Assuntos
Colesterol/efeitos adversos , Disfunção Cognitiva/terapia , Dieta Hiperlipídica/efeitos adversos , Meio Ambiente , Abrigo para Animais , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Intolerância à Glucose/terapia , Hipocampo/metabolismo , Hipocampo/patologia , Hipercolesterolemia/etiologia , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Hipercolesterolemia/psicologia , Interleucina-6/metabolismo , Masculino , Camundongos , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Obesidade/psicologia , Distribuição Aleatória , Reconhecimento Psicológico , Memória Espacial
14.
Sci Rep ; 8(1): 10742, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013130

RESUMO

Exercise physiology is different in males and females. Females are poorly studied due to the complexity of the estrous cycle and this bias has created an exercise sex gap. Here, we evaluated the impact of sexual dimorphism and of the estrous cycle on muscle strength and running power of C57BL/6 mice. Like men, male mice were stronger and more powerful than females. Exercise-induced increase of O2 consumption ([Formula: see text]O2) and CO2 production ([Formula: see text]CO2) were equal between sexes, indicating that running economy was higher in males. Thermoregulation was also more efficient in males. In females, proestrus increased exercise [Formula: see text]O2 and [Formula: see text]CO2 at low running speeds (30-35% female [Formula: see text]O2max) and estrus worsened thermoregulation. These differences translated into different absolute and relative workloads on the treadmill, even at equal submaximal [Formula: see text]O2 and belt speeds. In summary, our results demonstrate the better muscle strength, running power and economy, and exercise-induced thermoregulation of males compared to females. Proestrus and estrus still undermined the running economy and exercise-induced thermoregulation of females, respectively. These results demonstrate an important exercise sex gap in mice.


Assuntos
Ciclo Estral/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Dióxido de Carbono/metabolismo , Feminino , Frequência Cardíaca/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Consumo de Oxigênio/fisiologia , Corrida/fisiologia , Fatores Sexuais
15.
Cell Biol Int ; 42(6): 725-733, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29624777

RESUMO

Parkinson's disease (PD), the second-most prevalent neurodegenerative disease, is primarily characterized by neurodegeneration in the substantia nigra pars compacta, resulting in motor impairment. Loss-of-function mutations in parkin are the major cause of the early onset familial form of the disease. Although rodents deficient in parkin (parkin(-/-) ) have some dopaminergic system dysfunction associated with central oxidative stress and energy metabolism deficiencies, these animals only display nigrostriatal pathway degeneration under inflammatory conditions. This study investigated the impact of the inflammatory stimulus induced by lypopolisaccharide (LPS) on tetrahydrobiopterin (BH4) synthesizing enzymes (de novo and salvage pathways), since this cofactor is essential for dopamine synthesis. The mitochondrial content and architecture was investigated in the striatum of LPS-exposed parkin(-/-) mice. As expected, the LPS (0.33 mg/kg; i.p.) challenge compromised spontaneous locomotion and social interaction with juvenile parkin(-/-) and WT mice. Moreover, the genotype impacted the kinetics of the investigation of the juvenile. The inflammatory scenario did not induce apparent changes in mitochondrial ultrastructure; however, it increased the quantity of mitochondria, which were of smaller size, and provoked the perinuclear distribution of the organelle. Furthermore, the BH4 de novo biosynthetic pathway failed to be up-regulated in the LPS challenge, a well-known stimulus for its activation. The LPS treatment increased sepiapterin reductase (SPR) expression, suggesting compensation by the salvage pathway. This might indicate that dopamine synthesis is compromised in parkin(-/-) mice under inflammatory conditions. Finally, this scenario impaired the striatal expression of the transcription factor BDNF, possibly favoring cell death.


Assuntos
Biopterinas/análogos & derivados , Corpo Estriado/metabolismo , Ubiquitina-Proteína Ligases/genética , Oxirredutases do Álcool/metabolismo , Animais , Comportamento Animal , Biopterinas/biossíntese , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Lipopolissacarídeos/farmacologia , Locomoção , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Plasticidade Neuronal/fisiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/veterinária , Ubiquitina-Proteína Ligases/deficiência , Regulação para Cima/efeitos dos fármacos
16.
Brain Behav Immun ; 56: 156-64, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26916218

RESUMO

Neopterin is found at increased levels in biological fluids from individuals with inflammatory disorders. The biological role of this pteridine remains undefined; however, due to its capacity to increase hemeoxygenase-1 content, it has been proposed as a protective agent during cellular stress. Therefore, we investigated the effects of neopterin on motor, emotional and memory functions. To address this question, neopterin (0.4 and/or 4pmol) was injected intracerebroventricularly before or after the training sessions of step-down inhibitory avoidance and fear conditioning tasks, respectively. Memory-related behaviors were assessed in Swiss and C57BL/6 mice, as well as in Wistar rats. Moreover, the putative effects of neopterin on motor and anxiety-related parameters were addressed in the open field and elevated plus-maze tasks. The effects of neopterin on cognitive performance were also investigated after intraperitoneal lipopolysaccharide (LPS) administration (0.33mg/kg) in interleukin-10 knockout mice (IL-10(-/-)). It was consistently observed across rodent species that neopterin facilitated aversive memory acquisition by increasing the latency to step-down in the inhibitory avoidance task. This effect was related to a reduced threshold to generate the hippocampal long-term potentiation (LTP) process, and reduced IL-6 brain levels after the LPS challenge. However, neopterin administration after acquisition did not alter the consolidation of fear memories, neither motor nor anxiety-related parameters. Altogether, neopterin facilitated cognitive processes, probably by inducing an antioxidant/anti-inflammatory state, and by facilitating LTP generation. To our knowledge, this is the first evidence showing the cognitive enhancer property of neopterin.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Inibição Psicológica , Potenciação de Longa Duração/efeitos dos fármacos , Consolidação da Memória/efeitos dos fármacos , Neopterina/farmacologia , Nootrópicos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Medo/efeitos dos fármacos , Injeções Intraventriculares , Interleucina-10 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neopterina/administração & dosagem , Nootrópicos/administração & dosagem , Ratos , Ratos Wistar
17.
Neurotox Res ; 29(1): 118-25, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26464310

RESUMO

The classical motor symptoms of Parkinson's disease (PD) are preceded by non-motor symptoms in preclinical stages, including cognition impairment. The current drug treatment for PD is palliative and does not meet the clinical challenges of the disease, such as levodopa-induced dyskinesia, non-motor symptoms, and neuroprotection. We investigated the neuroprotective and disease-modifying potential of physical exercise in a preclinical animal model of PD. C57BL/6 mice (adult males) ran on a horizontal treadmill for 6 weeks (moderate intensity, 5 times/week) and were treated intranasally with 65 mg/kg of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Exercise did not protect against MPTP-induced nigrostriatal neurodegeneration or frontostriatal dopamine depletion but decreased striatal dopamine turnover. Exercise also attenuated procedural and working memory impairment and D2 receptor hypersensitivity in MPTP-treated mice. In summary, exercise improved dopaminergic neurotransmission and enhanced cognition in a preclinical animal model of PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/reabilitação , Dopamina/metabolismo , Neurotoxinas/farmacologia , Ácido 3,4-Di-Hidroxifenilacético , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Catalepsia/induzido quimicamente , Condicionamento Psicológico/efeitos dos fármacos , Teste de Esforço , Comportamento Exploratório/efeitos dos fármacos , Medo/efeitos dos fármacos , Ácido Homovanílico , Locomoção/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Tirosina 3-Mono-Oxigenase/metabolismo
18.
Front Biosci (Elite Ed) ; 7(1): 168-92, 2015 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-25553372

RESUMO

L-3,4-Dihydroxyphenylalanine (L-DOPA) remains the most effective symptomatic treatment of Parkinson's disease (PD). However, the long-term use of L-DOPA causes, in combination with disease progression, the development of motor complications termed L-DOPA-induced dyskinesia (LID). LID is the result of profound modifications in the functional organization of the basal ganglia circuitry. There is increasing evidence of the involvement of non-dopaminergic systems on the pathophysiology of LID. This raises the possibility of novel promising therapeutic approaches in the future, including agents that interfere with glutamatergic, serotonergic, adenosine, adrenergic, and cholinergic neurotransmission that are currently in preclinical testing or clinical development. Herein, we summarize the current knowledge of the pharmacology of LID in PD. More importantly, this review attempts to highlight the role of nitric oxide (NO) in PD and provide a comprehensive picture of recent preclinical findings from our group and others showing its potential involvement in dyskinesia.


Assuntos
Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/etiologia , Levodopa/efeitos adversos , Óxido Nítrico/metabolismo , Doença de Parkinson/tratamento farmacológico , Animais , Corpo Estriado/metabolismo , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Humanos , Doença de Parkinson/metabolismo
19.
Neurotox Res ; 25(2): 147-52, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23873578

RESUMO

Exercise improves the central nervous system (CNS) functions and is widely recommended for neurological patients with, e.g., Alzheimer's and Parkinson's disease (PD). However, exercise-induced neuroprotection is an open discussion. Here, the intranasal administration of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 65 mg/kg) caused death of dopaminergic neurons in the substantia nigra pars compacta and depletion of dopamine in the striatum of C57BL/6 mice. 1-Methyl-4-phenylpyridinium, the active metabolite of MPTP, also inhibited complex-I activity of mitochondria isolated from the CNS of mice. However, 6 weeks of exercise on voluntary running wheels did not protect against nigrostriatal neurodegeneration or mitochondrial inhibition, suggesting that benefits of exercise for PD may not be associated with neuroprotection. The literature presents other candidates, such as neurotrophins or increased antioxidant defenses.


Assuntos
Intoxicação por MPTP/prevenção & controle , Condicionamento Físico Animal , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , 1-Metil-4-fenilpiridínio/administração & dosagem , Administração Intranasal , Animais , Corpo Estriado/química , Corpo Estriado/efeitos dos fármacos , Dopamina/análise , Proteínas da Membrana Plasmática de Transporte de Dopamina/análise , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
20.
Neurotox Res ; 24(2): 280-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23588969

RESUMO

The loss of nigral dopaminergic neurons in Parkinson's disease (PD) is believed to result from interactions between genetic susceptibility and environmental factors. Although loss-of-function mutations in the parkin gene cause early-onset familial PD, the hybrid 129Sv-C57BL/6 parkin-deficient mice did not display spontaneous degeneration of the nigrostriatal pathway or enhanced vulnerability to neurotoxicity induced by 6-hydroxydopamine (6-OHDA) or intraperitoneal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication. We aimed to re-evaluate the role of parkin in a pure C57BL/6 background after an acute intranasal (i.n.) MPTP administration, a new route of toxin delivery to the brain that mimics environmental exposure to neurotoxins. We found that the deficiency of parkin gene modifies the D-amphetamine-induced locomotion in saline-treated animals. Intranasal MPTP induced Parkinsonism in parkin⁺/⁺ mice, through depletion of striatal dopamine, decreased number of dopaminergic neurons in the substantia nigra, and decreased D-amphetamine-induced hyperlocomotion. Additionally, the deletion of the parkin gene in a pure C57BL/6 background did not lead to increased vulnerability to i.n. MPTP-induced neurotoxicity. Moreover, the i.n. MPTP induced nigral astrogliosis predominantly in the pars reticulata in wild type and parkin⁻/⁻ mice. Taken together, these results showed that the absence of parkin did not modify the vulnerability of nigrostriatal dopaminergic pathway after i.n. MPTP intoxication, suggesting that independently of mouse strain, the endogenous parkin is not required for protection of this system. These findings also suggest that the development of familial parkin-linked PD is not associated with exposure to environmental factors that specifically affects the dopaminergic system.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Ubiquitina-Proteína Ligases/deficiência , Administração Intranasal , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Deleção de Genes , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA