Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(3): 3912-3924, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36623205

RESUMO

The growth of advanced energy technologies for power generation is enabled by the design, development, and integration of structural materials that can withstand extreme environments, such as high temperatures, radiation damage, and corrosion. High-entropy alloys (HEAs) are a class of structural materials in which suitable chemical elements in four or more numbers are mixed to typically produce single-phase concentrated solid solution alloys (CSAs). Many of these alloys exhibit good radiation tolerance like limited void swelling and hardening up to relatively medium radiation doses (tens of displacements per atom (dpa)); however, at higher radiation damage levels (>50 dpa), some HEAs suffer from considerable void swelling limiting their near-term acceptance for advanced nuclear reactor concepts. In this study, we developed a HEA containing a high density of Cu-rich nanoprecipitates distributed in the HEA matrix. The Cu-added HEA, NiCoFeCrCu0.12, shows excellent void swelling resistance and negligible radiation-induced hardening upon irradiation up to high radiation doses (i.e., higher than 100 dpa). The void swelling resistance of the alloy is measured to be significantly better than NiCoFeCr CSA and austenitic stainless steels. Density functional theory simulations predict lower vacancy and interstitial formation energies at the coherent interfaces between Cu-rich nanoprecipitates and the HEA matrix. The alloy maintained a high sink strength achieved via nanoprecipitates and the coherent interface with the matrix at a high radiation dose (∼50 dpa). From our experiments and simulations, the effective recombination of radiation-produced vacancies and interstitials at the coherent interfaces of the nanoprecipitates is suggested to be the critical mechanism responsible for the radiation tolerance of the alloy. The materials design strategy based on incorporating a high density of interfaces can be applied to high-entropy alloy systems to improve their radiation tolerance.

3.
Angew Chem Int Ed Engl ; 59(11): 4572-4580, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31914215

RESUMO

A gas-phase approach to form Zn coordination sites on metal-organic frameworks (MOFs) by vapor-phase infiltration (VPI) was developed. Compared to Zn sites synthesized by the solution-phase method, VPI samples revealed approximately 2.8 % internal strain. Faradaic efficiency towards conversion of CO2 to CO was enhanced by up to a factor of four, and the initial potential was positively shifted by 200-300 mV. Using element-specific X-ray absorption spectroscopy, the local coordination environment of the Zn center was determined to have square-pyramidal geometry with four Zn-N bonds in the equatorial plane and one Zn-OH2 bond in the axial plane. The fine-tuned internal strain was further supported by monitoring changes in XRD and UV/Visible absorption spectra across a range of infiltration cycles. The ability to use internal strain to increase catalytic activity of MOFs suggests that applying this strategy will enhance intrinsic catalytic capabilities of a variety of porous materials.

4.
Adv Sci (Weinh) ; 3(6): 1500320, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27812470

RESUMO

Earth-abundant sustainable inorganic thin-film solar cells, independent of precious elements, pivot on a marginal material phase space targeting specific compounds. Advanced materials characterization efforts are necessary to expose the roles of microstructure, chemistry, and interfaces. Herein, the earth-abundant solar cell device, Cu2ZnSnS(4-x)Se x , is reported, which shows a high abundance of secondary phases compared to similarly grown Cu2ZnSnSe4.

5.
Chem Commun (Camb) ; 51(91): 16377-80, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26404766

RESUMO

We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. This is significant as the use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. We discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies.

6.
Sci Rep ; 5: 13086, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26306812

RESUMO

The properties and performance of metal/oxide nanocomposites are governed by the structure and chemistry of the metal/oxide interfaces. Here we report an integrated theoretical and experimental study examining the role of interfacial structure, particularly misfit dislocations, on solute segregation at a metal/oxide interface. We find that the local oxygen environment, which varies significantly between the misfit dislocations and the coherent terraces, dictates the segregation tendency of solutes to the interface. Depending on the nature of the solute and local oxygen content, segregation to misfit dislocations can change from attraction to repulsion, revealing the complex interplay between chemistry and structure at metal/oxide interfaces. These findings indicate that the solute chemistry at misfit dislocations is controlled by the dislocation density and oxygen content. Fundamental thermodynamic concepts ­ the Hume-Rothery rules and the Ellingham diagram ­ qualitatively predict the segregation behavior of solutes to such interfaces, providing design rules for novel interfacial chemistries.

7.
Phys Chem Chem Phys ; 17(23): 15375-85, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26000664

RESUMO

Grain boundaries (GBs) dictate vital properties of nanocrystalline doped ceria. Thus, to understand and predict its properties, knowledge of the interaction between dopant-defect complexes and GBs is crucial. Here, we report atomistic simulations, corroborated with first principles calculations, elucidating the fundamental dopant-defect interactions at model GBs in gadolinium-doped and manganese-doped ceria. Gadolinium and manganese are aliovalent dopants, accommodated in ceria via a dopant-defect complex. While the behavior of isolated dopants and vacancies is expected to depend on the local atomic structure at GBs, the added structural complexity associated with dopant-defect complexes is found to have key implications on GB segregation. Compared to the grain interior, energies of different dopant-defect arrangements vary significantly at the GBs. As opposed to bulk, the stability of oxygen vacancy is found to be sensitive to the dopant arrangement at GBs. Manganese exhibits a stronger propensity for segregation to GBs than gadolinium, revealing that accommodation of dopant-defect clusters depends on the nature of dopants. Segregation strength is found to depend on the GB character, a result qualitatively supported by our experimental observations based on scanning transmission electron microscopy. The present results indicate that segregation energies, availability of favorable sites, and overall stronger binding of dopant-defect complexes would influence ionic conductivity across GBs in nanocrystalline doped ceria. Our comprehensive investigation emphasizes the critical role of dopant-defect interactions at GBs in governing functional properties in fluorite-structured ionic conductors.

8.
Nat Commun ; 5: 5043, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25247885

RESUMO

Exploiting the promise of nanocomposite oxides necessitates a detailed understanding of the dislocation structure at the interfaces, which governs diverse and technologically relevant properties. Here we report atomistic simulations demonstrating a strong dependence of the dislocation structure on the termination chemistry at the SrTiO3/MgO heterointerface. The SrO- and TiO2-terminated interfaces exhibit distinct nearest neighbour arrangements between cations and anions, leading to variations in local electrostatic interactions across the interface that ultimately dictate the dislocation structure. Networks of dislocations with different Burgers vectors and dislocation spacing characterize the two interfaces. These networks in turn influence the overall stability of and the behaviour of oxygen vacancies at the heterointerface, which will dictate vital properties such as mass transport at the interface. To date, the observed correlation between the dislocation structure and the termination chemistry at the interface has not been recognized, and offers novel avenues for fine-tuning oxide nanocomposites with enhanced functionalities.

9.
J Chem Phys ; 140(19): 194701, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24852551

RESUMO

Due to reduced dimensions and increased interfacial content, nanocomposite oxides offer improved functionalities in a wide variety of advanced technological applications, including their potential use as radiation tolerant materials. To better understand the role of interface structures in influencing the radiation damage tolerance of oxides, we have conducted atomistic calculations to elucidate the behavior of radiation-induced point defects (vacancies and interstitials) at interface steps in a model CeO2/SrTiO3 system. We find that atomic-scale steps at the interface have substantial influence on the defect behavior, which ultimately dictate the material performance in hostile irradiation environments. Distinctive steps react dissimilarly to cation and anion defects, effectively becoming biased sinks for different types of defects. Steps also attract cation interstitials, leaving behind an excess of immobile vacancies. Further, defects introduce significant structural and chemical distortions primarily at the steps. These two factors are plausible origins for the enhanced amorphization at steps seen in our recent experiments. The present work indicates that comprehensive examination of the interaction of radiation-induced point defects with the atomic-scale topology and defect structure of heterointerfaces is essential to evaluate the radiation tolerance of nanocomposites. Finally, our results have implications for other applications, such as fast ion conduction.

10.
Ultramicroscopy ; 124: 130-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23154033

RESUMO

While the development of monochromators for scanning transmission electron microscopes (STEM) has improved our ability to resolve spectral features in the 0-5 eV energy range of the electron energy loss spectrum, the overall benefits relative to unfiltered microscopes have been difficult to quantify. Simple curve fitting and reciprocal space models that extrapolate the expected behavior of the zero-loss peak are not enough to fully exploit the optimal spectral limit and can hinder the ease of interpreting the resulting spectra due to processing-induced artifacts. To address this issue, here we present a quantitative comparison of two processing methods for performing ZLP removal and for defining the low-energy spectral limit applied to three microscopes with different intrinsic emission and energy resolutions. Applying the processing techniques to spectroscopic data obtained from each instrument leads in each case to a marked improvement in the spectroscopic limit, regardless of the technique implemented or the microscope setup. The example application chosen to benchmark these processing techniques is the energy limit obtained from a silicon wedge sample as a function of thickness. Based on these results, we conclude on the possibility to resolve statistically significant spectral features to within a hundred meV of the native instrumental energy spread, opening up the future prospect of tracking phonon peaks as new and improved hardware becomes available.


Assuntos
Espectroscopia de Perda de Energia de Elétrons/métodos , Artefatos , Microscopia Eletrônica de Transmissão e Varredura/métodos , Silício/química
11.
Microsc Microanal ; 18(3): 621-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22640968

RESUMO

Observation of growth, synthesis, dynamics, and electrochemical reactions in the liquid state is an important yet largely unstudied aspect of nanotechnology. The only techniques that can potentially provide the insights necessary to advance our understanding of these mechanisms is simultaneous atomic-scale imaging and quantitative chemical analysis (through spectroscopy) under environmental conditions in the transmission electron microscope. In this study we describe the experimental and technical conditions necessary to obtain electron energy loss (EEL) spectra from a nanoparticle in colloidal suspension using aberration-corrected scanning transmission electron microscopy (STEM) combined with the environmental liquid stage. At a fluid path length below 400 nm, atomic resolution images can be obtained and simultaneous compositional analysis can be achieved. We show that EEL spectroscopy can be used to quantify the total fluid path length around the nanoparticle and demonstrate that characteristic core-loss signals from the suspended nanoparticles can be resolved and analyzed to provide information on the local interfacial chemistry with the surrounding environment. The combined approach using aberration-corrected STEM and EEL spectra with the in situ fluid stage demonstrates a plenary platform for detailed investigations of solution-based catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA