Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuropharmacology ; 258: 110059, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38992791

RESUMO

Stimulation of the dorsal half of the rat periaqueductal gray (DPAG) with 60-Hz pulses of increasing intensity, 30-µA pulses of increasing frequency, or increasing doses of an excitatory amino acid elicits sequential defensive responses of exophthalmia, immobility, trotting, galloping, and jumping. These responses may be controlled by voltage-gated calcium channel-specific firing patterns. Indeed, a previous study showed that microinjection of the DPAG with 15 nmol of verapamil, a putative blocker of L-type calcium channels, attenuated all defensive responses to electrical stimulation at the same site as the injection. Accordingly, here we investigated the effects of microinjection of lower doses (0.7 and 7 nmol) of both verapamil and mibefradil, a preferential blocker of T-type calcium channels, on DPAG-evoked defensive behaviors of the male rat. Behaviors were recorded either 24 h before or 10 min, 24 h, and 48 h after microinjection. Effects were analyzed by both threshold logistic analysis and repeated measures analysis of variance for treatment by session interactions. Data showed that the electrodes were all located within the dorsolateral PAG. Compared to the effects of saline, verapamil significantly attenuated exophthalmia, immobility, and trotting. Mibefradil significantly attenuated exophthalmia and marginally attenuated immobility while facilitating trotting. While galloping was not attenuated by either antagonist, jumping was unexpectedly attenuated by 0.7 nmol verapamil only. These results suggest that T-type calcium channels are involved in the low-threshold freezing responses of exophthalmia and immobility, whereas L-type calcium channels are involved in the trotting response that precedes the full-fledged escape responses of galloping and jumping.


Assuntos
Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo L , Canais de Cálcio Tipo T , Estimulação Elétrica , Mibefradil , Substância Cinzenta Periaquedutal , Verapamil , Animais , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/fisiologia , Masculino , Canais de Cálcio Tipo T/fisiologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo L/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Mibefradil/farmacologia , Verapamil/farmacologia , Ratos , Ratos Wistar , Microinjeções , Relação Dose-Resposta a Droga
2.
Metab Brain Dis ; 36(3): 453-462, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33394286

RESUMO

Stroke is considered one of the leading causes of death worldwide. The treatment is limited; however, the Brazilian flora has a great source of natural products with therapeutic potentials. Studies with the medicinal plant Polygala sabulosa W. Bennett provided evidence for its use as an anti-inflammatory and neuroprotective drug. In the case of ischemic stroke due to lack of oxygen, both acute and chronic inflammatory processes are activated. Thus, we hypothesized that P. sabulosa (HEPs) has the potential to treat the motor and cognitive deficits generated by ischemic stroke. Male mice were subjected to global ischemia for 60 min, followed by reperfusion and orally treated with HEPs (100 mg/kg in saline + 3% tween 20) twice a day (12 h apart) for 48 h starting 3 h after surgery. Motor skills were assessed using grip force and open field tasks. Hippocampi were then collected for mRNA quantification of the cytokines IL-1-ß and TNF-α levels. After 48 h of acute treatment, spatial reference memory was evaluated in a Morris water maze test for another group of animals. We show that HEPs treatment significantly prevented motor weakness induced by ischemia. Brain infarct area was reduced by 22.25% with downregulation of the levels of IL-1ß and TNF-α mRNA. Learning performance and memory ability on Morris water maze task were similar to the sham group. Our data demonstrates the neuroprotective properties of HEPs through its anti-inflammatory activities, which prevent motor and cognitive impairments, suggesting that HEPs may be an effective therapy for ischemic stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Transtornos Motores/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/uso terapêutico , Polygala , Animais , Isquemia Encefálica/metabolismo , Cognição/efeitos dos fármacos , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Força da Mão , Interleucina-1beta/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Transtornos Motores/metabolismo , Destreza Motora/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA