Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 153(4): 2469, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37092951

RESUMO

Passive acoustic monitoring (PAM) offers considerable potential for density estimation of cryptic cetaceans, such as beaked whales. However, comparative studies on the accuracy of PAM density estimates from these species are lacking. Concurrent, low-cost drifting PAM, with SoundTraps suspended at 200 m depth, and land-based sightings, were conducted off the Canary Islands. Beaked whale density was estimated using a cue-count method, with click production rate and the probability of click detection derived from digital acoustic recording tags (DTags), and distance sampling techniques, adapted to fixed-point visual surveys. Of 32 870 detections obtained throughout 206 h of PAM recordings, 68% were classified as "certain" beaked whale clicks. Acoustic detection probability was 0.15 [coefficient variation (CV) 0.24] and click production rate was 0.46 clicks s - 1 (CV 0.05). PAM density estimates were in the range of 21.5 or 48.6 whales per 1000 km2 [CV 0.50 or 0.44, 95% confidence interval (CI) 20.7-22.4 or 47-50.9), depending on whether "uncertain" clicks were considered. Density estimates from concurrent sightings resulted in 33.7 whales per 1000 km2 (CV 0.77, 95% CI 8.9-50.5). Cue-count PAM methods under application provide reliable estimates of beaked whale density, over relatively long time periods and in realistic scenarios, as these match the concurrent density estimates obtained from visual observations.


Assuntos
Ecolocação , Baleias , Animais , Vocalização Animal , Espanha , Espectrografia do Som , Fatores de Tempo , Acústica
2.
J Acoust Soc Am ; 149(3): 1923, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33765819

RESUMO

Short-finned pilot whales (Globicephala macrorhynchus) are large, deep-diving predators with diverse foraging strategies, but little is known about their echolocation. To quantify the source properties of short-finned pilot whale clicks, we made 15 deployments off the coast of Tenerife of a deep-water hydrophone array consisting of seven autonomous time-synced hydrophone recorders (SoundTraps), enabling acoustic localization and quantification of click source parameters. Of 8185 recorded pilot whale clicks, 47 were classified as being recorded on-axis, with a mean peak-to-peak source level (SL) of 181 ± 7 dB re 1 µPa, a centroid frequency of 40 ± 4 kHz, and a duration of 57 ± 23 µs. A fit to a piston model yielded an estimated half-power (-3 dB) beam width of 13.7° [95% confidence interval (CI) 13.2°-14.5°] and a mean directivity index (DI) of 22.6 dB (95% CI 22.5-22.9 dB). These measured SLs and DIs are surprisingly low for a deep-diving toothed whale, suggesting we sampled the short-finned pilot whales in a context with little need for operating a long-range biosonar. The substantial spectral overlap with beaked whale clicks emitted in similar deep-water habitats implies that pilot whale clicks may constitute a common source of false detections in beaked whale passive acoustic monitoring efforts.


Assuntos
Ecolocação , Baleia Comum , Baleias Piloto , Acústica , Animais , Espectrografia do Som , Vocalização Animal , Baleias
3.
Proc Biol Sci ; 286(1895): 20182533, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30963955

RESUMO

Mass stranding events (MSEs) of beaked whales (BWs) were extremely rare prior to the 1960s but increased markedly after the development of naval mid-frequency active sonar (MFAS). The temporal and spatial associations between atypical BW MSEs and naval exercises were first observed in the Canary Islands, Spain, in the mid-1980s. Further research on BWs stranded in association with naval exercises demonstrated pathological findings consistent with decompression sickness (DCS). A 2004 ban on MFASs around the Canary Islands successfully prevented additional BW MSEs in the region, but atypical MSEs have continued in other places of the world, especially in the Mediterranean Sea, with examined individuals showing DCS. A workshop held in Fuerteventura, Canary Islands, in September 2017 reviewed current knowledge on BW atypical MSEs associated with MFAS. Our review suggests that the effects of MFAS on BWs vary among individuals or populations, and predisposing factors may contribute to individual outcomes. Spatial management specific to BW habitat, such as the MFAS ban in the Canary Islands, has proven to be an effective mitigation tool and mitigation measures should be established in other areas taking into consideration known population-level information.


Assuntos
Som/efeitos adversos , Baleias/fisiologia , Animais , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA