RESUMO
Fungi are ubiquitous and metabolically versatile. Their dispersion has important scientific, environmental, health, and economic implications. They can be dispersed through the air by the aerosolization of near surfaces or transported from distant sources. Here, we tested the contribution of local (scale of meters) versus regional (kilometers) sources by analyzing an airborne fungal community by ITS sequencing around a copper mine in the North of Chile. The mine was the regional source, whereas the soil and vegetal detritus were the local sources at each point. The airborne community was highly homogeneous at ca. 2000 km2, impeding the detection of regional or local contributions. Ascomycota was the dominant phylum in the three communities. Soil and vegetal detritus communities had lower alpha diversity, but some taxa had abundance patterns related to the distance from the mine and altitude. On the contrary, the air was compositionally even and unrelated to environmental or spatial factors, except for altitude. The presence of plant pathogens in the air suggests that other distant sources contribute to this region's airborne fungal community and reinforces the complexity of tracking the sources of air microbial communities in a real world where several natural and human activities coexist.
RESUMO
The phylogeny of the genus Pelecorhynchus Macquart (Diptera: Pelecorhynchidae) was analyzed using three genes, cytochrome oxidase I, 28S ribosomal DNA, and CAD5, with 112 morphological characteristics. A total of 59 specimens (13 outgroups and 46 ingroups) were included in the analysis. The monophyly of Pelecorhynchidae was recovered under all analyses, with Glutops Burgess as the sister group of Pelecorhynchus s.l., while Pseudoerinna jonesi (Cresson) was the sister group. Within Pelecorhynchus there are three main clades with unresolved affinities. Clade I was formed by P. personatus (Walker), P. vulpes (Macquart), P. penai Pechuman and P. kroeberi (Lindner), a well-supported clade. Clade II corresponds to the set of species of Chilean Pelecorhynchus, conformed to P. biguttatus (Philippi), P. toltensis Llanos & Gonzlez, P. elegans (Philippi), P. xanthopleura (Philippi), P. hualqui Llanos & Gonzlez, and P. longicauda (Bigot), a well-supported clade. Clade III is represented exclusively by P. fulvus Ricardo, which has an exclusively Australian distribution. The monophyly of P. fulvus and its nomenclature remain an open question, as only a single species of this taxon was included. Our study demonstrated that the concept of Pelecorhynchus should be revisited. Therefore, we restore Coenura Bigot, 1857 to generic status for part of the southern South American species of Pelecorhynchus conformed by the species C. biguttata, C. elegans, C. hualqui, C. longicauda, C. toltensis, and C. xanthopleura which are monophyletic, supported by molecular and morphological data, and consistent with a Chilean distribution.
Assuntos
Dípteros , Animais , Dípteros/genética , Filogenia , Caenorhabditis elegans , AustráliaRESUMO
The yeast Saccharomyces cerevisiae is the main species responsible for the process that involves the transformation of grape must into wine, with the initial nitrogen in the grape must being vital for it. One of the main problems in the wine industry is the deficiency of nitrogen sources in the grape must, leading to stuck or sluggish fermentations, and generating economic losses. In this scenario, an alternative is the isolation or generation of yeast strains with low nitrogen requirements for fermentation. In the present study, we carry out a genetic improvement program using as a base population a group of 70 strains isolated from winemaking environments mainly in Chile and Argentina (F0), making from it a first and second filial generation (F1 and F2, respectively) based in different families and hybrids. It was found that the trait under study has a high heritability, obtaining in the F2 population strains that consume a minor proportion of the nitrogen sources present in the must. Among these improved strains, strain "686" specially showed a marked drop in the nitrogen consumption, without losing fermentative performance, in synthetic grape must at laboratory level. When using this improved strain to produce wine from a natural grape must (supplemented and non-supplemented with ammonium) at pilot scale under wine cellar conditions, a similar fermentative capacity was obtained between this strain and a widely used commercial strain (EC1118). However, when fermented in a non-supplemented must, improved strain "686" showed the presence of a marked floral aroma absent for EC1118 strain, this difference being probably a direct consequence of its different pattern in amino acid consumption. The combination of the capacity of improved strain "686" to ferment without nitrogen addition and produce floral aromas may be of commercial interest for the wine industry.
RESUMO
Background Saccharomyces cerevisiae is the main microorganism responsible for alcoholic fermentation. In this process, the consumption of nitrogen is of great importance since it is found in limiting quantities and its deficiency produces sluggish and/or stuck fermentations generating large economic losses in the wine-making industry. In a previous work we compared the transcriptional profiles between genetically related strains with differences in nitrogen consumption, detecting genes with differential expression that could be associated to the differences in the levels of nitrogen consumed. One of the genes identified was ICY1. With the aim of confirming this observation, in the present work we evaluated the consumption of ammonium during the fermentation of strains that have deleted or overexpressed this gene. Results Our results confirm the effect of ICY1 on nitrogen uptake by evaluating its expression in wine yeasts during the first stages of fermentation under low (MS60) and normal (MS300) assimilable nitrogen. Our results show that the mRNA levels of ICY1 diminish when the amount of assimilable nitrogen is low. Furthermore, we constructed strains derived from the industrial strain EC1118 as a null mutant in this gene as well as one that overexpressed it. Conclusions Our results suggest that the expression of ICY1 is regulated by the amount of nitrogen available in the must and it is involved in the consumption of ammonium, given the increase in the consumption of this nitrogen source observed in the null mutant strain.
Assuntos
Saccharomyces cerevisiae/genética , Vinho/microbiologia , Leveduras/genética , Fermentação , Saccharomyces cerevisiae/metabolismo , Leveduras/metabolismo , Expressão Gênica , Clonagem Molecular , Deleção de Genes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , NitrogênioRESUMO
Different populations within a species represent a rich reservoir of allelic variants, corresponding to an evolutionary signature of withstood environmental constraints. Saccharomyces cerevisiae strains are widely utilised in the fermentation of different kinds of alcoholic beverages, such as, wine and sake, each of them derived from must with distinct nutrient composition. Importantly, adequate nitrogen levels in the medium are essential for the fermentation process, however, a comprehensive understanding of the genetic variants determining variation in nitrogen consumption is lacking. Here, we assessed the genetic factors underlying variation in nitrogen consumption in a segregating population derived from a cross between two main fermenter yeasts, a Wine/European and a Sake isolate. By linkage analysis we identified 18 main effect QTLs for ammonium and amino acids sources. Interestingly, majority of QTLs were involved in more than a single trait, grouped based on amino acid structure and indicating high levels of pleiotropy across nitrogen sources, in agreement with the observed patterns of phenotypic co-variation. Accordingly, we performed reciprocal hemizygosity analysis validating an effect for three genes, GLT1, ASI1 and AGP1. Furthermore, we detected a widespread pleiotropic effect on these genes, with AGP1 affecting seven amino acids and nine in the case of GLT1 and ASI1. Based on sequence and comparative analysis, candidate causative mutations within these genes were also predicted. Altogether, the identification of these variants demonstrate how Sake and Wine/European genetic backgrounds differentially consume nitrogen sources, in part explaining independently evolved preferences for nitrogen assimilation and representing a niche of genetic diversity for the implementation of practical approaches towards more efficient strains for nitrogen metabolism.