Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 34(17): e2109581, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35174908

RESUMO

Current advances in materials science have demonstrated that extracellular mechanical cues can define cell function and cell fate. However, a fundamental understanding of the manner in which intracellular mechanical cues affect cell mechanics remains elusive. How intracellular mechanical hindrance, reinforcement, and supports interfere with the cell cycle and promote cell death is described here. Reproducible devices with highly controlled size, shape, and with a broad range of stiffness are internalized in HeLa cells. Once inside, they induce characteristic cell-cycle deviations and promote cell death. Device shape and stiffness are the dominant determinants of mechanical impairment. Device structural support to the cell membrane and centering during mitosis maximize their effects, preventing spindle centering, and correct chromosome alignment. Nanodevices reveal that the spindle generates forces larger than 114 nN which overcomes intracellular confinement by relocating the device to a less damaging position. By using intracellular mechanical drugs, this work provides a foundation to defining the role of intracellular constraints on cell function and fate, with relevance to fundamental cell mechanics and nanomedicine.


Assuntos
Mitose , Ciclo Celular , Morte Celular , Células HeLa , Humanos
2.
Sci Rep ; 11(1): 18495, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531498

RESUMO

Current microtechnologies have shown plenty of room inside a living cell for silicon chips. Microchips as barcodes, biochemical sensors, mechanical sensors and even electrical devices have been internalized into living cells without interfering their cell viability. However, these technologies lack from the ability to trap and preconcentrate cells in a specific region, which are prerequisites for cell separation, purification and posterior studies with enhanced sensitivity. Magnetic manipulation of microobjects, which allows a non-contacting method, has become an attractive and promising technique at small scales. Here, we show intracellular Ni-based chips with magnetic capabilities to allow cell enrichment. As a proof of concept of the potential to integrate multiple functionalities on a single device of this technique, we combine coding and magnetic manipulation capabilities in a single device. Devices were found to be internalized by HeLa cells without interfering in their viability. We demonstrated the tagging of a subpopulation of cells and their subsequent magnetic trapping with internalized barcodes subjected to a force up to 2.57 pN (for magnet-cells distance of 4.9 mm). The work opens the venue for future intracellular chips that integrate multiple functionalities with the magnetic manipulation of cells.

3.
Small ; 16(46): e2004691, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33079486

RESUMO

Next generation life science technologies will require the integration of building blocks with tunable physical and chemical architectures at the microscale. A central issue is to govern the multidimensional anisotropic space that defines these microparticle attributes. However, this control is limited to one or few dimensions due to profound fabrication tradeoffs, a problem that is exacerbated by miniaturization. Here, a vast number of anisotropic dimensions are integrated combining SU-8 photolithography with (bio)chemical modifications via soft-lithography. Microparticles in a 15-D anisotropic space are demonstrated, covering branching, faceting, fiducial, topography, size, aspect ratio, stiffness, (bio)molecular and quantum dot printing, top/bottom surface coverage, and quasi-0D, 1D, 2D, and 3D surface patterning. The strategy permits controlled miniaturization on physical dimensions below 1 µm and molecular patterns below 1 µm2 . By combining building blocks, anisotropic microparticles detect pH changes, form the basis for a DNA-assay recognition platform, and obtain an extraordinary volumetric barcoding density up to 1093 codes µm-3 in a 3 × 12 × 0.5 µm3 volume.


Assuntos
Polímeros , Impressão , Anisotropia , Impressão Tridimensional
4.
Nanomaterials (Basel) ; 10(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392901

RESUMO

Micrometer-sized silicon chips have been demonstrated to be cell-internalizable, offering the possibility of introducing in cells even smaller nanoelements for intracellular applications. On the other hand, silicon nanowires on extracellular devices have been widely studied as biosensors or drug delivery systems. Here, we propose the integration of silicon nanowires on cell-internalizable chips in order to combine the functional features of both approaches for advanced intracellular applications. As an initial fundamental study, the cellular uptake in HeLa cells of silicon 3 µm × 3 µm nanowire-based chips with two different morphologies was investigated, and the results were compared with those of non-nanostructured silicon chips. Chip internalization without affecting cell viability was achieved in all cases; however, important cell behavior differences were observed. In particular, the first stage of cell internalization was favored by silicon nanowire interfaces with respect to bulk silicon. In addition, chips were found inside membrane vesicles, and some nanowires seemed to penetrate the cytosol, which opens the door to the development of silicon nanowire chips as future intracellular sensors and drug delivery systems.

5.
Adv Mater ; 28(7): 1449-54, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26649987

RESUMO

A novel suspended planar-array chips technology is described, which effectively allows molecular multiplexing using a single suspended chip to analyze extraordinarily small volumes. The suspended chips are fabricated by combining silicon-based technology and polymer-pen lithography, obtaining increased molecular pattern flexibility, and improving miniaturization and parallel production. The chip miniaturization is so dramatic that it permits the intracellular analysis of living cells.


Assuntos
Dispositivos Lab-On-A-Chip , Células HeLa , Humanos , Polímeros/química , Impressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA