Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891937

RESUMO

Modular supramolecular complexes, where different proteins are assembled to gather targeting capability and photofunctional properties within the same structures, are of special interest for bacterial photodynamic inactivation, given their inherent biocompatibility and flexibility. We have recently proposed one such structure, exploiting the tetrameric bacterial protein streptavidin as the main building block, to target S. aureus protein A. To expand the palette of targets, we have linked biotinylated Concanavalin A, a sugar-binding protein, to a methylene blue-labelled streptavidin. By applying a combination of spectroscopy and microscopy, we demonstrate the binding of Concanavalin A to the walls of Gram-positive S. aureus and Gram-negative E. coli. Photoinactivation is observed for both bacterial strains in the low micromolar range, although the moderate affinity for the molecular targets and the low singlet oxygen yields limit the overall efficiency. Finally, we apply a maximum entropy method to the analysis of autocorrelation traces, which proves particularly useful when interpreting signals measured for diffusing systems heterogeneous in size, such as fluorescent species bound to bacteria.


Assuntos
Parede Celular , Concanavalina A , Escherichia coli , Staphylococcus aureus , Concanavalina A/química , Concanavalina A/metabolismo , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Parede Celular/metabolismo , Estreptavidina/química , Estreptavidina/metabolismo , Proteínas de Bactérias/metabolismo , Ligação Proteica
2.
Antibiotics (Basel) ; 11(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35203884

RESUMO

Combined therapies are usually used to treat acne vulgaris since this approach can tackle various foci simultaneously. Using a combination of spectroscopic, computational, and microbiological techniques and methods, herein we report on the use of ß-lactoglobulin as a double payload carrier of hypericin (an antimicrobial photodynamic agent) and all-trans retinoic acid (an anti-inflammatory drug) for S. aureus in vitro photodynamic inactivation. The addition of all-trans retinoic acid to hypericin-ß-lactoglobulin complex renders a photochemically safe vehicle due to the photophysical quenching of hypericin, which recovers its photodynamic activity when in contact with bacteria. The ability of hypericin to photoinactivate S. aureus was not affected by retinoic acid. ß-Lactoglobulin is a novel biocompatible and photochemically safe nanovehicle with strong potential for the treatment of acne.

3.
Pharmaceutics ; 14(2)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35214137

RESUMO

The major limitation of any cancer therapy lies in the difficulty of precisely controlling the localization of the drug in the tumor cells. To improve this drawback, our study explores the use of actively-targeted chemo-photo-nanocarriers that recognize and bind to epidermal growth factor receptor-overexpressing cells and promote the local on-demand release of the chemotherapeutic agent doxorubicin triggered by light. Our results show that the attachment of high concentrations of doxorubicin to cetuximab-IRDye700DX-mesoporous silica nanoparticles yields efficient and selective photokilling of EGFR-expressing cells mainly through singlet oxygen-induced release of the doxorubicin from the nanocarrier and without any dark toxicity. Therefore, this novel triply functionalized nanosystem is an effective and safe nanodevice for light-triggered on-demand doxorubicin release.

4.
Chemistry ; 27(15): 4955-4963, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33442909

RESUMO

Herein, the photodynamic activity of phthalocyanine (pc)-assembled nanoparticles against bacterial strains is demonstrated. The photosensitizers (PS) studied in this work are two chiral ZnII Pcs (PS-1 and PS-2), with an AABB geometry (where A and B refer to differently substituted isoindole constituents). They contain differently functionalized, chiral binaphthyloxy-linked A isoindole units, which determine the hydrophobicity of the system, and cationic methyl pyridinium moieties in the other two isoindoles to embody hydrophilicity. Both compounds have the ability to self-assemble into nanoparticles in aqueous media and have proved efficient in the photo-inactivation of Staphylococcus aureus and Escherichia coli, selected as models of Gram-positive and Gram-negative bacteria. The average size of the nanoparticles was determined by substitution at the binaphthyl core and, in turn, influences the toxicity of the PS. Thus, PS-1, presenting a nonsubstituted binaphthyl core, forms larger nanoparticles with a larger cationic surface than the octyl-functionalized PS-2. Although both PSs present similar structure and photophysical features, the self-assembled nanostructures of PS-1 are more effective at killing both types of strain, showing an outstanding photo-inactivation capacity with the Gram-negative E. coli.


Assuntos
Anti-Infecciosos , Nanoestruturas , Fotoquimioterapia , Antibacterianos/farmacologia , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Indóis , Isoindóis , Fármacos Fotossensibilizantes
5.
Sensors (Basel) ; 20(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096750

RESUMO

Photoacoustic imaging is attracting a great deal of interest owing to its distinct advantages over other imaging techniques such as fluorescence or magnetic resonance image. The availability of photoacoustic probes for reactive oxygen and nitrogen species (ROS/RNS) could shed light on a plethora of biological processes mediated by these key intermediates. Tetramethylbenzidine (TMB) is a non-toxic and non-mutagenic colorless dye that develops a distinctive blue color upon oxidation. In this work, we have investigated the potential of TMB as an acoustogenic photoacoustic probe for ROS/RNS. Our results indicate that TMB reacts with hypochlorite, hydrogen peroxide, singlet oxygen, and nitrogen dioxide to produce the blue oxidation product, while ROS, such as the superoxide radical anion, sodium peroxide, hydroxyl radical, or peroxynitrite, yield a colorless oxidation product. TMB does not penetrate the Escherichia coli cytoplasm but is capable of detecting singlet oxygen generated in its outer membrane.

6.
Photochem Photobiol ; 96(3): 570-580, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32104926

RESUMO

Active targeting strategies are currently being extensively investigated in order to enhance the selectivity of photodynamic therapy. The aim of the present research was to evaluate whether the external decoration of nanopolymeric carriers with targeting peptides could add more value to a photosensitizer formulation and increase antitumor therapeutic efficacy and selectivity. To this end, we assessed PLGA-PLA-PEG nanoparticles (NPs) covalently attached to a hydrophilic photosensitizer 5-[4-azidophenyl]-10,15,20-tri-(N-methyl-4-pyridinium)porphyrinato zinc (II) trichloride (ZnTriMPyP) and also to c(RGDfK) peptides, in order to target αv ß3 integrin-expressing cells. In vitro phototoxicity investigations showed that the ZnTriMPyP-PLGA-PLA-PEG-c(RGDfK) nanosystem is effective at submicromolar concentrations, is devoid of dark toxicity, successfully targets αv ß3 integrin-expressing cells and is 10-fold more potent than related nanosystems where the PS is occluded instead of covalently bound.


Assuntos
Portadores de Fármacos , Nanopartículas , Neoplasias/tratamento farmacológico , Oligopeptídeos/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Polímeros/química , Linhagem Celular Tumoral , Humanos , Integrinas/efeitos dos fármacos , Cinética , Fármacos Fotossensibilizantes/uso terapêutico , Oxigênio Singlete/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
7.
Antibiotics (Basel) ; 9(3)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106485

RESUMO

The emergence of multidrug-resistant bacteria is a growing problem and alternative therapies are being sought to effectively address this issue. The aim of this study is to assess a range of Escherichia coli strains' susceptibility to Methylene Blue-mediated antimicrobial photodynamic therapy and determine if this is affected by their antibiotic-resistance profile. Two reference and twenty-four uropathogenic clinical E. coli strains were used in this study. All were tested in vitro for antimicrobial susceptibility against sixteen antibiotics. Strains underwent photodynamic treatments using the photosensitizer Methylene Blue with red light and tested in both planktonic and biofilm state. It was found that reference strain ATCC 25922 was susceptible to all tested antibiotics whereas reference strain ATCC 35218 showed resistance only to Ampicillin. With the exception of strains number 16 and 22, all of the isolated strains were multidrug-resistant according to the criteria established by the European Centre for Disease Prevention and Control and the Centre for Disease Control and Prevention, where acquired non-susceptibility to at least one agent in three or more antimicrobial categories is outlined. Photodynamic therapy induced more than 3 log10 colony-forming units' reduction to all strains in planktonic state. Whereas when tested in biofilm state, two and a half times the original dose of methylene blue was necessary to cause a 3 log10 antimicrobial effect. There were statistically significant differences in susceptibility among the strains tested in both the planktonic and biofilm experiments. Nevertheless, antimicrobial photodynamic therapy could inactivate all multidrug-resistant strains in the planktonic and biofilm state.

8.
Bioorg Chem ; 97: 103661, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32086054

RESUMO

A novel photoantimicrobial agent, namely 2-aminothiazolo[4,5-c]-2,7,12,17-tetrakis(methoxyethyl)porphycene (ATAZTMPo-gentamicin) conjugate, has been prepared by a click reaction between the red-light absorbing 9-isothiocyanate-2,7,12,17-tetrakis(methoxyethyl)porphycene (9-ITMPo) and the antibiotic gentamicin. The conjugate exhibits submicromolar activity in vitro against both Gram-positive and Gram-negative bacteria (Staphylococcus aureus and Escherichia coli, respectively) upon exposure to red light and is devoid of any cytotoxicity in the dark. The conjugate outperforms the two components delivered separately, which may be used to enhance the therapeutic index of gentamicin, broaden the spectrum of pathogens against which it is effective and reduce its side effects. Additionally, we report a novel straightforward synthesis of 2,7,12,17-tetrakis(methoxyethyl) porphycene (TMPo) that decreases the number of steps from nine to six.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Gentamicinas/química , Gentamicinas/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos
9.
Eur J Med Chem ; 187: 111957, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31864170

RESUMO

Herein, we report the synthesis and characterization of new amphiphilic phthalocyanines (Pcs), the study of their singlet oxygen generation capabilities, and biological assays to determine their potential as photosensitizers for photodynamic inactivation of bacteria. In particular, Pcs with an ABAB geometry (where A and B refer to differently substituted isoindole constituents) have been synthesized. These molecules are endowed with bulky bis(trifluoromethylphenyl) groups in two facing isoindoles, which hinder aggregation and favour singlet oxygen generation, and pyridinium or alkylammonium moieties in the other two isoindoles. In particular, two water-soluble Pc derivatives (PS-1 and PS-2) have proved to be efficient in the photoinactivation of S. aureus and E. coli, selected as models of Gram-positive and Gram-negative bacteria.


Assuntos
Antibacterianos/farmacologia , Flúor/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Indóis/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Cátions/química , Cátions/farmacologia , Relação Dose-Resposta a Droga , Flúor/química , Indóis/química , Isoindóis , Testes de Sensibilidade Microbiana , Estrutura Molecular , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Relação Estrutura-Atividade
10.
Photochem Photobiol Sci ; 18(5): 1020-1029, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30821303

RESUMO

BACKGROUND: Antimicrobial photodynamic therapy (aPDT) is a growing approach to treat skin and mucosal infections. Despite its effectiveness, investigators have explored whether aPDT can be further combined with antibiotics and antifungal drugs. OBJECTIVE: To systematically assess the in vivo studies on the effectiveness of combinations of aPTD plus antimicrobials in the treatment of cutaneous and mucosal infections. MATERIALS AND METHODS: Searches were performed in four databases (PubMed, EMBASE, Cochrane library databases, ClinicaTrials.gov) until July 2018. The pooled information was evaluated according to the PRISMA guidelines. RESULTS: 11 full-text articles were finally evaluated and included. The best aPDT combinations involved 5-aminolevulinic acid or phenothiazinium dye-based aPDT. In general, the combination shows benefits such as reducing treatment times, lowering drug dosages, decreasing drug toxicity, improving patient compliance and diminishing the risk of developing resistance. The mechanism of action may be that first aPDT damages the microbial cell wall or membrane, which allows better penetration of the antimicrobial drug. LIMITATIONS: The number of studies was low, the protocols used were heterogeneous, and there was a lack of clinical trials. CONCLUSIONS: The additive or synergistic effect of aPDT combined with antimicrobials could be promising to manage skin and mucosal infections, helping to overcome the microbial drug resistance.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Doenças da Boca/tratamento farmacológico , Fotoquimioterapia , Pele/efeitos dos fármacos , Antibacterianos/química , Humanos , Testes de Sensibilidade Microbiana , Doenças da Boca/microbiologia , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/microbiologia , Pele/microbiologia
11.
J Biophotonics ; 11(10): e201800054, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29882394

RESUMO

Light-mediated killing of pathogens by cationic photosensitisers is a promising antimicrobial approach that avoids the development of resistance inherent to the use of antimicrobials. In this study, we demonstrate that modification of different photosensitisers with the triphenylphosphonium cation yields derivatives with excellent photoantimicrobial activity against Gram-positive bacteria (ie, Staphylococcus aureus and Enterococcus faecalis). Thus, the triphenylphosphonium functional group should be considered for the development of photoantimicrobials for the selective killing of Gram-positive bacteria in the presence of Gram-negative species.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/efeitos da radiação , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/efeitos da radiação
12.
Org Biomol Chem ; 16(6): 1037, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29379935

RESUMO

Correction for 'Cationic phthalocyanine dendrimers as potential antimicrobial photosensitisers' by Rubén Ruiz-González et al., Org. Biomol. Chem., 2017, 15, 9008-9017.

13.
Org Biomol Chem ; 15(42): 9008-9017, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29044277

RESUMO

In the present study we describe the synthesis, photophysical properties and the photoinactivation performance against representative microorganisms of two families of cationic dendrimeric phthalocyanines as potential photosensitisers. Four charged dendrimeric compounds varying in their degree of ionicity (4 or 8 positive charges) and the coordinating metal (zinc or ruthenium) are compared and assessed as potential photosensitising agents in terms of their antimicrobial activity.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Dendrímeros/farmacologia , Escherichia coli/efeitos dos fármacos , Indóis/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Cátions/síntese química , Cátions/química , Cátions/farmacologia , Dendrímeros/síntese química , Dendrímeros/química , Relação Dose-Resposta a Droga , Indóis/síntese química , Indóis/química , Isoindóis , Testes de Sensibilidade Microbiana , Estrutura Molecular , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Relação Estrutura-Atividade
14.
PLoS One ; 12(7): e0181517, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28723923

RESUMO

The photoprocesses involved in the photo-induced Candida tropicalis biofilm reduction by two natural anthraquinones (AQs), rubiadin (1) and rubiadin-1-methyl ether (2), were examined. Production of singlet oxygen (1O2) and of superoxide radical anion (O2•-) was studied. Although it was not possible to detect the triplet state absorption of any AQs in biofilms, observation of 1O2 phosphorescence incubated with deuterated Phosphate Buffer Solution, indicated that this species is actually formed in biofilms. 2 was accumulated in the biofilm to a greater extent than 1 and produced measurable amounts of O2•- after 3h incubation in biofilms. The effect of reactive oxygen species scavengers on the photo-induced biofilm reduction showed that Tiron (a specific O2•- scavenger) is most effective than sodium azide (a specific 1O2 quencher). This suggests that O2•- formed by electron transfer quenching of the AQs excited states, is the main photosensitizing mechanism involved in the photo-induced antibiofilm activity, whereas 1O2 participation seems of lesser importance.


Assuntos
Antraquinonas/farmacologia , Biofilmes/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Luz , Biofilmes/crescimento & desenvolvimento , Candida tropicalis/metabolismo , Espécies Reativas de Oxigênio , Superóxidos/metabolismo
15.
Angew Chem Int Ed Engl ; 56(11): 2885-2888, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28151569

RESUMO

A biocompatible fluorescent nanoprobe for singlet oxygen (1 O2 ) detection in biological systems was designed, synthesized, and characterized, that circumvents many of the limitations of the molecular probe Singlet Oxygen Sensor Green® (SOSG). This widely used commercial singlet oxygen probe was covalently linked to a polyacrylamide nanoparticle core using different architectures to optimize the response to 1 O2 . In contrast to its molecular counterpart, the optimum SOSG-based nanoprobe, which we call NanoSOSG, is readily internalized by E. coli cells and does not interact with bovine serum albumin. Furthermore, the spectral characteristics do not change inside cells, and the probe responds to intracellularly generated 1 O2 with an increase in fluorescence.

16.
Chemistry ; 23(18): 4320-4326, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28097714

RESUMO

The development of photoactive and biocompatible nanostructures is a highly desirable goal to address the current threat of antibiotic resistance. Here, we describe a novel supramolecular biohybrid nanostructure based on the non-covalent immobilization of cationic zinc phthalocyanine (ZnPc) derivatives onto unmodified cellulose nanocrystals (CNC), following an easy and straightforward protocol, in which binding is driven by electrostatic interactions. These non-covalent biohybrids show strong photodynamic activity against S. aureus and E. coli, representative examples of Gram-positive and Gram-negative bacteria, respectively, and C. albicans, a representative opportunistic fungal pathogen, outperforming the free ZnPc counterparts and related nanosystems in which the photosensitizer is covalently linked to the CNC surface.


Assuntos
Celulose/química , Indóis/química , Nanopartículas/química , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Candida albicans/efeitos dos fármacos , Cátions/química , Microscopia Crioeletrônica , Difusão Dinâmica da Luz , Escherichia coli/efeitos dos fármacos , Isoindóis , Luz , Tamanho da Partícula , Fármacos Fotossensibilizantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Compostos de Zinco
17.
J Agric Food Chem ; 64(45): 8633-8639, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27785913

RESUMO

Zinc-substituted myoglobin (ZnMb) is a naturally occurring photosensitizer that generates singlet oxygen with a high quantum yield. Using a combination of photophysical and fluorescence imaging techniques, we demonstrate the interaction of ZnMb with Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. An efficient antibacterial action against S. aureus was observed, with a reduction up to 99.9999% in the number of colony-forming units, whereas no sizable effect was detected against E. coli. Because ZnMb is known to form during the maturation of additive-free not-cooked cured ham, the use of this protein as a built-in photodynamic agent may constitute a viable method for the decontamination of these food products from Gram-positive bacteria.


Assuntos
Antibacterianos/farmacologia , Contaminação de Alimentos/prevenção & controle , Mioglobina/farmacologia , Zinco/farmacologia , Animais , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Cavalos , Luz , Testes de Sensibilidade Microbiana , Mioglobina/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/efeitos da radiação
18.
J Am Chem Soc ; 138(8): 2762-8, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26867005

RESUMO

Herein, we synthesized a series of 10 core-shell silver-silica nanoparticles with a photosensitizer, Rose Bengal, tethered to their surface. Each nanoparticle possesses an identical silver core of about 67 nm, but presents a different silica shell thickness ranging from 5 to 100 nm. These hybrid plasmonic nanoparticles thus afford a plasmonic nanostructure platform with a source of singlet oxygen ((1)O2) at a well-defined distance from the metallic core. Via time-resolved and steady state spectroscopic techniques, we demonstrate the silver core exerts a dual role of enhancing both the production of (1)O2, through enhanced absorption of light, and its radiative decay, which in turn boosts (1)O2 phosphorescence emission to a greater extent. Furthermore, we show both the production and emission of (1)O2 in vitro to be dependent on proximity to the plasmonic nanostructure. Our results clearly exhibit three distinct regimes as the plasmonic nanostructure moves apart from the (1)O2 source, with a greater enhancement for silica shell thicknesses ranging between 10 and 20 nm. Moreover, these hybrid plasmonic nanoparticles can be delivered to both Gram-positive and Gram-negative bacteria boosting both photoantibacterial activity and detection limit of (1)O2 in cells.


Assuntos
Nanopartículas Metálicas/química , Rosa Bengala/química , Prata/química , Oxigênio Singlete/análise , Ressonância de Plasmônio de Superfície/métodos , Escherichia coli/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Staphylococcus aureus/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo
19.
Int J Mol Sci ; 16(11): 27072-86, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26569238

RESUMO

Over the last decades, the number of pathogenic multi-resistant microorganisms has grown dramatically, which has stimulated the search for novel strategies to combat antimicrobial resistance. Antimicrobial photodynamic therapy (aPDT) is one of the promising alternatives to conventional treatments based on antibiotics. Here, we present a comparative study of two aryl tricationic porphycenes where photoinactivation efficiency against model pathogenic microorganisms is correlated to the photophysical behavior of the porphycene derivatives. Moreover, the extent of photosensitizer cell binding to bacteria has been assessed by flow cytometry in experiments with, or without, removing the unbound porphycene from the incubation medium. Results show that the peripheral substituent change do not significantly affect the overall behavior for both tricationic compounds neither in terms of photokilling efficiency, nor in terms of binding.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Cátions/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/efeitos da radiação , Citometria de Fluxo , Luz , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Estrutura Molecular , Fotoquimioterapia/métodos
20.
Molecules ; 20(4): 6284-98, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25859784

RESUMO

Over the last 20 years, the number of pathogenic multi-resistant microorganisms has grown steadily, which has stimulated the search for new strategies to combat antimicrobial resistance. Antimicrobial photodynamic therapy (aPDT), also called photodynamic inactivation, is emerging as a promising alternative to treatments based on conventional antibiotics. We have explored the effectiveness of methylene blue-loaded targeted mesoporous silica nanoparticles (MSNP) in the photodynamic inactivation of two Gram negative bacteria, namely Escherichia coli and Pseudomonas aeruginosa. For E. coli, nanoparticle association clearly reduced the dark toxicity of MB while preserving its photoinactivation activity. For P. aeruginosa, a remarkable difference was observed between amino- and mannose-decorated nanoparticles. The details of singlet oxygen production in the nanoparticles have been characterized, revealing the presence of two populations of this cytotoxic species. Strong quenching of singlet oxygen within the nanoparticles is observed.


Assuntos
Anti-Infecciosos/administração & dosagem , Nanopartículas/química , Dióxido de Silício/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Escherichia coli/efeitos dos fármacos , Humanos , Luz , Manose/química , Azul de Metileno , Nanopartículas/administração & dosagem , Pseudomonas aeruginosa/efeitos dos fármacos , Dióxido de Silício/administração & dosagem , Dióxido de Silício/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA