Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
1.
NPJ Parkinsons Dis ; 10(1): 192, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39438499

RESUMO

Mutations in GBA1 encoding the lysosomal enzyme ß-glucocerebrosidase (GCase) are among the most prevalent genetic susceptibility factors for Parkinson's disease (PD), with 10-30% of carriers developing the disease. To identify genetic modifiers contributing to the incomplete penetrance, we examined the effect of 1634 human transcription factors (TFs) on GCase activity in lysates of an engineered human glioblastoma line homozygous for the pathogenic GBA1 L444P variant. Using an arrayed CRISPR activation library, we uncovered 11 TFs as regulators of GCase activity. Among these, activation of MITF and TFEC increased lysosomal GCase activity in live cells, while activation of ONECUT2 and USF2 decreased it. While MITF, TFEC, and USF2 affected GBA1 transcription, ONECUT2 might control GCase trafficking. The effects of MITF, TFEC, and USF2 on lysosomal GCase activity were reproducible in iPSC-derived neurons from PD patients. Our study provides a systematic approach to identifying modulators of GCase activity and deepens our understanding of the mechanisms regulating GCase.

2.
Sci Rep ; 14(1): 21622, 2024 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284839

RESUMO

The cellular prion protein (PrPC) plays many roles in the developing and adult brain. In addition, PrPC binds to several amyloids in oligomeric and prefibrillar forms and may act as a putative receptor of abnormal misfolded protein species. The role of PrPC in tau seeding and spreading is not known. In the present study, we have inoculated well-characterized sarkosyl-insoluble fractions of sporadic Alzheimer's disease (sAD) into the brain of adult wild-type mice (Prnp+/+), Prnp0/0 (ZH3 strain) mice, and mice over-expressing the secreted form of PrPC lacking their GPI anchor (Tg44 strain). Phospho-tau (ptau) seeding and spreading involving neurons and oligodendrocytes were observed three and six months after inoculation. 3Rtau and 4Rtau deposits from the host tau, as revealed by inoculating Mapt0/0 mice and by using specific anti-mouse and anti-human tau antibodies suggest modulation of exon 10 splicing of the host mouse Mapt gene elicited by exogenous sAD-tau. However, no tau seeding and spreading differences were observed among Prnp genotypes. Our results show that PrPC does not affect tau seeding and spreading in vivo.


Assuntos
Doença de Alzheimer , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/genética , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Camundongos , Humanos , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas PrPC/metabolismo , Proteínas PrPC/genética , Camundongos Transgênicos , Proteínas Priônicas/metabolismo , Proteínas Priônicas/genética , Sarcosina/análogos & derivados , Sarcosina/farmacologia , Neurônios/metabolismo , Neurônios/patologia , Modelos Animais de Doenças
4.
PLoS Pathog ; 20(9): e1012517, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39264912

RESUMO

The cellular prion protein, PrPC, has been postulated to function as a receptor for α-synuclein, potentially facilitating cell-to-cell spreading and/or toxicity of α-synuclein aggregates in neurodegenerative disorders such as Parkinson's disease. Previously, we generated the "Salt (S)" and "No Salt (NS)" strains of α-synuclein aggregates that cause distinct pathological phenotypes in M83 transgenic mice overexpressing A53T-mutant human α-synuclein. To test the hypothesis that PrPC facilitates the propagation of α-synuclein aggregates, we produced M83 mice that either express or do not express PrPC. Following intracerebral inoculation with the S or NS strain, the absence of PrPC in M83 mice did not prevent disease development and had minimal influence on α-synuclein strain-specified attributes such as the extent of cerebral α-synuclein deposition, selective targeting of specific brain regions and cell types, the morphology of induced α-synuclein deposits, and the structural fingerprints of protease-resistant α-synuclein aggregates. Likewise, there were no appreciable differences in disease manifestation between PrPC-expressing and PrPC-lacking M83 mice following intraperitoneal inoculation of the S strain. Interestingly, intraperitoneal inoculation with the NS strain resulted in two distinct disease phenotypes, indicative of α-synuclein strain evolution, but this was also independent of PrPC expression. Overall, these results suggest that PrPC plays at most a minor role in the propagation, neuroinvasion, and evolution of α-synuclein strains in mice that express A53T-mutant human α-synuclein. Thus, other putative receptors or cell-to-cell propagation mechanisms may have a larger effect on the spread of α-synuclein aggregates during disease.


Assuntos
Sinucleinopatias , alfa-Sinucleína , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos Transgênicos , Proteínas PrPC/metabolismo , Proteínas PrPC/genética , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia
5.
PLoS Pathog ; 20(9): e1012552, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39259763

RESUMO

In prion diseases (PrDs), aggregates of misfolded prion protein (PrPSc) accumulate not only in the brain but also in extraneural organs. This raises the question whether prion-specific pathologies arise also extraneurally. Here we sequenced mRNA transcripts in skeletal muscle, spleen and blood of prion-inoculated mice at eight timepoints during disease progression. We detected gene-expression changes in all three organs, with skeletal muscle showing the most consistent alterations. The glutamate-ammonia ligase (GLUL) gene exhibited uniform upregulation in skeletal muscles of mice infected with three distinct scrapie prion strains (RML, ME7, and 22L) and in victims of human sporadic Creutzfeldt-Jakob disease. GLUL dysregulation was accompanied by changes in glutamate/glutamine metabolism, leading to reduced glutamate levels in skeletal muscle. None of these changes were observed in skeletal muscle of humans with amyotrophic lateral sclerosis, Alzheimer's disease, or dementia with Lewy bodies, suggesting that they are specific to prion diseases. These findings reveal an unexpected metabolic dimension of prion infections and point to a potential role for GLUL dysregulation in the glutamate/glutamine metabolism in prion-affected skeletal muscle.


Assuntos
Ácido Glutâmico , Glutamina , Músculo Esquelético , Doenças Priônicas , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Glutamina/metabolismo , Ácido Glutâmico/metabolismo , Camundongos , Doenças Priônicas/metabolismo , Doenças Priônicas/genética , Humanos , Glutamato-Amônia Ligase/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Síndrome de Creutzfeldt-Jakob/genética , Feminino , Camundongos Endogâmicos C57BL
6.
bioRxiv ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39185170

RESUMO

A hallmark of Alzheimer's disease (AD) is the extracellular aggregation of toxic amyloid-beta (Aß) peptides in form of plaques. Here, we identify netoglitazone, an antidiabetic compound previously tested in humans, as an Aß aggregation antagonist. Netoglitazone improved cognition and reduced microglia activity in a mouse model of AD. Using quantitative whole-brain three-dimensional histology (Q3D), we precisely identified brain regions where netoglitazone reduced the number and size of Aß plaques. We demonstrate the utility of Q3D in preclinical drug evaluation for AD by providing a high-resolution brain-wide view of drug efficacy. Applying Q3D has the potential to improve pre-clinical drug evaluation by providing information that can help identify mechanisms leading to brain region-specific drug efficacy.

7.
Nat Microbiol ; 9(8): 2051-2072, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39075233

RESUMO

Delivering macromolecules across biological barriers such as the blood-brain barrier limits their application in vivo. Previous work has demonstrated that Toxoplasma gondii, a parasite that naturally travels from the human gut to the central nervous system (CNS), can deliver proteins to host cells. Here we engineered T. gondii's endogenous secretion systems, the rhoptries and dense granules, to deliver multiple large (>100 kDa) therapeutic proteins into neurons via translational fusions to toxofilin and GRA16. We demonstrate delivery in cultured cells, brain organoids and in vivo, and probe protein activity using imaging, pull-down assays, scRNA-seq and fluorescent reporters. We demonstrate robust delivery after intraperitoneal administration in mice and characterize 3D distribution throughout the brain. As proof of concept, we demonstrate GRA16-mediated brain delivery of the MeCP2 protein, a putative therapeutic target for Rett syndrome. By characterizing the potential and current limitations of the system, we aim to guide future improvements that will be required for broader application.


Assuntos
Encéfalo , Neurônios , Proteínas de Protozoários , Toxoplasma , Toxoplasma/genética , Toxoplasma/metabolismo , Animais , Neurônios/metabolismo , Neurônios/parasitologia , Camundongos , Humanos , Encéfalo/metabolismo , Encéfalo/parasitologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Sistemas de Liberação de Medicamentos
8.
EMBO Mol Med ; 16(9): 2024-2042, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39080493

RESUMO

Extracellularly released molecular inflammasome assemblies -ASC specks- cross-seed Aß amyloid in Alzheimer's disease. Here we show that ASC governs the extent of inflammation-induced amyloid A (AA) amyloidosis, a systemic disease caused by the aggregation and peripheral deposition of the acute-phase reactant serum amyloid A (SAA) in chronic inflammatory conditions. Using super-resolution microscopy, we found that ASC colocalized tightly with SAA in human AA amyloidosis. Recombinant ASC specks accelerated SAA fibril formation and mass spectrometry after limited proteolysis showed that ASC interacts with SAA via its pyrin domain (PYD). In a murine model of inflammatory AA amyloidosis, splenic amyloid load was conspicuously decreased in Pycard-/- mice which lack ASC. Treatment with anti-ASCPYD antibodies decreased amyloid loads in wild-type mice suffering from AA amyloidosis. The prevalence of natural anti-ASC IgG (-logEC50 ≥ 2) in 19,334 hospital patients was <0.01%, suggesting that anti-ASC antibody treatment modalities would not be confounded by natural autoimmunity. These findings expand the role played by ASC and IL-1 independent inflammasome employments to extraneural proteinopathies and suggest that anti-ASC immunotherapy may contribute to resolving such diseases.


Assuntos
Amiloidose , Proteínas Adaptadoras de Sinalização CARD , Inflamassomos , Proteína Amiloide A Sérica , Animais , Proteína Amiloide A Sérica/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Amiloidose/metabolismo , Amiloidose/patologia , Humanos , Inflamassomos/metabolismo , Camundongos , Camundongos Knockout , Modelos Animais de Doenças , Inflamação/metabolismo , Inflamação/patologia , Agregados Proteicos , Camundongos Endogâmicos C57BL
10.
PLoS One ; 19(7): e0304528, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39079175

RESUMO

Human prion diseases are rare, transmissible and often rapidly progressive dementias. The most common type, sporadic Creutzfeldt-Jakob disease (sCJD), is highly variable in clinical duration and age at onset. Genetic determinants of late onset or slower progression might suggest new targets for research and therapeutics. We assembled and array genotyped sCJD cases diagnosed in life or at autopsy. Clinical duration (median:4, interquartile range (IQR):2.5-9 (months)) was available in 3,773 and age at onset (median:67, IQR:61-73 (years)) in 3,767 cases. Phenotypes were successfully transformed to approximate normal distributions allowing genome-wide analysis without statistical inflation. 53 SNPs achieved genome-wide significance for the clinical duration phenotype; all of which were located at chromosome 20 (top SNP rs1799990, pvalue = 3.45x10-36, beta = 0.34 for an additive model; rs1799990, pvalue = 9.92x10-67, beta = 0.84 for a heterozygous model). Fine mapping, conditional and expression analysis suggests that the well-known non-synonymous variant at codon 129 is the obvious outstanding genome-wide determinant of clinical duration. Pathway analysis and suggestive loci are described. No genome-wide significant SNP determinants of age at onset were found, but the HS6ST3 gene was significant (pvalue = 1.93 x 10-6) in a gene-based test. We found no evidence of genome-wide genetic correlation between case-control (disease risk factors) and case-only (determinants of phenotypes) studies. Relative to other common genetic variants, PRNP codon 129 is by far the outstanding modifier of CJD survival suggesting only modest or rare variant effects at other genetic loci.


Assuntos
Idade de Início , Síndrome de Creutzfeldt-Jakob , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Idoso , Pessoa de Meia-Idade , Feminino , Masculino , Fenótipo , Genótipo
11.
Front Microbiol ; 15: 1412765, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919500

RESUMO

Commensal intestinal bacteria shape our microbiome and have decisive roles in preserving host metabolic and immune homeostasis. They conspicuously impact disease development and progression, including amyloid-beta (Aß) and alpha (α)-synuclein pathology in neurodegenerative diseases, conveying the importance of the brain-gut-microbiome axis in such conditions. However, little is known about the longitudinal microbiome landscape and its potential clinical implications in other protein misfolding disorders, such as prion disease. We investigated the microbiome architecture throughout prion disease course in mice. Fecal specimens were assessed by 16S ribosomal RNA sequencing. We report a temporal microbiome signature in prion disease and uncovered alterations in Lachnospiraceae, Ruminococcaceae, Desulfovibrionaceae, and Muribaculaceae family members in this disease. Moreover, we determined the enrichment of Bilophila, a microorganism connected to cognitive impairment, long before the clinical manifestation of disease symptoms. Based on temporal microbial abundances, several associated metabolic pathways and resulting metabolites, including short-chain fatty acids, were linked to the disease. We propose that neuroinflammatory processes relate to perturbations of the intestinal microbiome and metabolic state by an interorgan brain-gut crosstalk. Furthermore, we describe biomarkers possibly suitable for early disease diagnostics and anti-prion therapy monitoring. While our study is confined to prion disease, our discoveries might be of equivalent relevance in other proteinopathies and central nervous system pathologies.

12.
PLoS One ; 19(6): e0304603, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38870196

RESUMO

Iatrogenic transmission of prions, the infectious agents of fatal Creutzfeldt-Jakob disease, through inefficiently decontaminated medical instruments remains a critical issue. Harsh chemical treatments are effective, but not suited for routine reprocessing of reusable surgical instruments in medical cleaning and disinfection processes due to material incompatibilities. The identification of mild detergents with activity against prions is therefore of high interest but laborious due to the low throughput of traditional assays measuring prion infectivity. Here, we report the establishment of TESSA (sTainlESs steel-bead Seed Amplification assay), a modified real-time quaking induced cyclic amplification (RT-QuIC) assay that explores the propagation activity of prions with stainless steel beads. TESSA was applied for the screening of about 70 different commercially available and novel formulations and conditions for their prion inactivation efficacy. One hypochlorite-based formulation, two commercially available alkaline formulations and a manual alkaline pre-cleaner were found to be highly effective in inactivating prions under conditions simulating automated washer-disinfector cleaning processes. The efficacy of these formulations was confirmed in vivo in a murine prion infectivity bioassay, yielding a reduction of the prion titer for bead surface adsorbed prions below detectability. Our data suggest that TESSA represents an effective method for a rapid screening of prion-inactivating detergents, and that alkaline and oxidative formulations are promising in reducing the risk of potential iatrogenic prion transmission through insufficiently decontaminated instrument surfaces.


Assuntos
Príons , Aço Inoxidável , Instrumentos Cirúrgicos , Animais , Camundongos , Aço Inoxidável/química , Descontaminação/métodos , Síndrome de Creutzfeldt-Jakob/transmissão , Síndrome de Creutzfeldt-Jakob/prevenção & controle , Desinfecção/métodos , Detergentes/química , Detergentes/farmacologia , Humanos , Desinfetantes/farmacologia , Oxirredução
14.
Nat Neurosci ; 27(8): 1534-1544, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38802591

RESUMO

Oligodendrocyte-lineage cells, including NG2 glia, undergo prominent changes in various neurodegenerative disorders. Here, we identify a neuroprotective role for NG2 glia against prion toxicity. NG2 glia were activated after prion infection in cerebellar organotypic cultured slices (COCS) and in brains of prion-inoculated mice. In both model systems, depletion of NG2 glia exacerbated prion-induced neurodegeneration and accelerated prion pathology. Loss of NG2 glia enhanced the biosynthesis of prostaglandin E2 (PGE2) by microglia, which augmented prion neurotoxicity through binding to the EP4 receptor. Pharmacological or genetic inhibition of PGE2 biosynthesis attenuated prion-induced neurodegeneration in COCS and mice, reduced the enhanced neurodegeneration in NG2-glia-depleted COCS after prion infection, and dampened the acceleration of prion disease in NG2-glia-depleted mice. These data unveil a non-cell-autonomous interaction between NG2 glia and microglia in prion disease and suggest that PGE2 signaling may represent an actionable target against prion diseases.


Assuntos
Dinoprostona , Microglia , Neuroglia , Neurônios , Doenças Priônicas , Transdução de Sinais , Animais , Microglia/metabolismo , Dinoprostona/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neuroglia/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Camundongos Endogâmicos C57BL , Antígenos/metabolismo , Proteoglicanas/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Príons/metabolismo , Príons/toxicidade , Cerebelo/metabolismo , Cerebelo/patologia
15.
Swiss Med Wkly ; 154: 3485, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579306

RESUMO

AIMS OF THE STUDY: Systemic amyloidoses are rare protein-folding diseases with heterogeneous, often nonspecific clinical presentations. To better understand systemic amyloidoses and to apply state-of-the-art diagnostic pathways and treatment, the interdisciplinary Amyloidosis Network was founded in 2013 at University Hospital Zurich. In this respect, a registry was implemented to study the characteristics and life expectancy of patients with amyloidosis within the area covered by the network. Patient data were collected retrospectively for the period 2005-2014 and prospectively from 2015 onwards. METHODS: Patients aged 18 years or older diagnosed with any subtype of systemic amyloidosis were eligible for inclusion if they were treated in one of the four referring centres (Zurich, Chur, St Gallen, Bellinzona). Baseline data were captured at the time of diagnosis. Follow-up data were assessed half-yearly for the first two years, then annually. RESULTS: Between January 2005 and March 2020, 247 patients were screened, and 155 patients with confirmed systemic amyloidosis were included in the present analysis. The most common amyloidosis type was light-chain (49.7%, n = 77), followed by transthyretin amyloidosis (40%, n = 62) and amyloid A amyloidosis (5.2%, n = 8). Most patients (61.9%, n = 96) presented with multiorgan involvement. Nevertheless, single organ involvement was seen in all types of amyloidosis, most commonly in amyloid A amyloidosis (75%, n = 6). The median observation time of the surviving patients was calculated by the reverse Kaplan-Meier method and was 3.29 years (95% confidence interval [CI] 2.33-4.87); it was 4.87 years (95% CI 3.14-7.22) in light-chain amyloidosis patients and 1.85 years (95% CI 1.48-3.66) in transthyretin amyloidosis patients, respectively. The 1-, 3- and 5-year survival rates were 87.0% (95% CI 79.4-95.3%), 68.5% (95% CI 57.4-81.7%) and 66.0% (95% CI 54.6-79.9%) respectively for light-chain amyloidosis patients and 91.2% (95% CI 83.2-99.8%), 77.0% (95% CI 63.4-93.7%) and 50.6% (95% CI 31.8-80.3%) respectively for transthyretin amyloidosis patients. There was no significant difference between the two groups (p = 0.81). CONCLUSION: During registry set-up, a more comprehensive work-up of our patients suffering mainly from light-chain amyloidosis and transthyretin amyloidosis was implemented. Survival rates were remarkably high and similar between light-chain amyloidosis and transthyretin amyloidosis, a finding which was noted in similar historic registries of international centres. However, further studies are needed to depict morbidity and mortality as the amyloidosis landscape is changing rapidly.


Assuntos
Neuropatias Amiloides Familiares , Amiloidose , Humanos , Neuropatias Amiloides Familiares/diagnóstico , Neuropatias Amiloides Familiares/metabolismo , Neuropatias Amiloides Familiares/terapia , Sistema de Registros , Estudos Retrospectivos , Proteína Amiloide A Sérica , Suíça/epidemiologia , Adulto
16.
Nat Commun ; 15(1): 2679, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538644

RESUMO

In 2015, we launched the mesoSPIM initiative, an open-source project for making light-sheet microscopy of large cleared tissues more accessible. Meanwhile, the demand for imaging larger samples at higher speed and resolution has increased, requiring major improvements in the capabilities of such microscopes. Here, we introduce the next-generation mesoSPIM ("Benchtop") with a significantly increased field of view, improved resolution, higher throughput, more affordable cost, and simpler assembly compared to the original version. We develop an optical method for testing detection objectives that enables us to select objectives optimal for light-sheet imaging with large-sensor cameras. The improved mesoSPIM achieves high spatial resolution (1.5 µm laterally, 3.3 µm axially) across the entire field of view, magnification up to 20×, and supports sample sizes ranging from sub-mm up to several centimeters while being compatible with multiple clearing techniques. The microscope serves a broad range of applications in neuroscience, developmental biology, pathology, and even physics.


Assuntos
Microscopia , Neurociências , Microscopia/métodos
17.
Nature ; 626(8001): 1073-1083, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355792

RESUMO

Human cellular models of neurodegeneration require reproducibility and longevity, which is necessary for simulating age-dependent diseases. Such systems are particularly needed for TDP-43 proteinopathies1, which involve human-specific mechanisms2-5 that cannot be directly studied in animal models. Here, to explore the emergence and consequences of TDP-43 pathologies, we generated induced pluripotent stem cell-derived, colony morphology neural stem cells (iCoMoNSCs) via manual selection of neural precursors6. Single-cell transcriptomics and comparison to independent neural stem cells7 showed that iCoMoNSCs are uniquely homogenous and self-renewing. Differentiated iCoMoNSCs formed a self-organized multicellular system consisting of synaptically connected and electrophysiologically active neurons, which matured into long-lived functional networks (which we designate iNets). Neuronal and glial maturation in iNets was similar to that of cortical organoids8. Overexpression of wild-type TDP-43 in a minority of neurons within iNets led to progressive fragmentation and aggregation of the protein, resulting in a partial loss of function and neurotoxicity. Single-cell transcriptomics revealed a novel set of misregulated RNA targets in TDP-43-overexpressing neurons and in patients with TDP-43 proteinopathies exhibiting a loss of nuclear TDP-43. The strongest misregulated target encoded the synaptic protein NPTX2, the levels of which are controlled by TDP-43 binding on its 3' untranslated region. When NPTX2 was overexpressed in iNets, it exhibited neurotoxicity, whereas correcting NPTX2 misregulation partially rescued neurons from TDP-43-induced neurodegeneration. Notably, NPTX2 was consistently misaccumulated in neurons from patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 pathology. Our work directly links TDP-43 misregulation and NPTX2 accumulation, thereby revealing a TDP-43-dependent pathway of neurotoxicity.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C-Reativa , Proteínas de Ligação a DNA , Degeneração Lobar Frontotemporal , Rede Nervosa , Proteínas do Tecido Nervoso , Neurônios , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteína C-Reativa/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Neuroglia/citologia , Neurônios/citologia , Neurônios/metabolismo , Reprodutibilidade dos Testes
18.
Neuron ; 112(9): 1456-1472.e6, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38412858

RESUMO

Recanalization is the mainstay of ischemic stroke treatment. However, even with timely clot removal, many stroke patients recover poorly. Leptomeningeal collaterals (LMCs) are pial anastomotic vessels with yet-unknown functions. We applied laser speckle imaging, ultrafast ultrasound, and two-photon microscopy in a thrombin-based mouse model of stroke and fibrinolytic treatment to show that LMCs maintain cerebral autoregulation and allow for gradual reperfusion, resulting in small infarcts. In mice with poor LMCs, distal arterial segments collapse, and deleterious hyperemia causes hemorrhage and mortality after recanalization. In silico analyses confirm the relevance of LMCs for preserving perfusion in the ischemic region. Accordingly, in stroke patients with poor collaterals undergoing thrombectomy, rapid reperfusion resulted in hemorrhagic transformation and unfavorable recovery. Thus, we identify LMCs as key components regulating reperfusion and preventing futile recanalization after stroke. Future therapeutic interventions should aim to enhance collateral function, allowing for beneficial reperfusion after stroke.


Assuntos
Circulação Colateral , AVC Isquêmico , Meninges , Reperfusão , Animais , AVC Isquêmico/fisiopatologia , AVC Isquêmico/terapia , Camundongos , Circulação Colateral/fisiologia , Humanos , Reperfusão/métodos , Meninges/irrigação sanguínea , Masculino , Circulação Cerebrovascular/fisiologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Encéfalo/irrigação sanguínea , Trombectomia/métodos
19.
Nat Commun ; 15(1): 897, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316783

RESUMO

Descriptive data are rapidly expanding in biomedical research. Instead, functional validation methods with sufficient complexity remain underdeveloped. Transcriptional reporters allow experimental characterization and manipulation of developmental and disease cell states, but their design lacks flexibility. Here, we report logical design of synthetic cis-regulatory DNA (LSD), a computational framework leveraging phenotypic biomarkers and trans-regulatory networks as input to design reporters marking the activity of selected cellular states and pathways. LSD uses bulk or single-cell biomarkers and a reference genome or custom cis-regulatory DNA datasets with user-defined boundary regions. By benchmarking validated reporters, we integrate LSD with a computational ranking of phenotypic specificity of putative cis-regulatory DNA. Experimentally, LSD-designed reporters targeting a wide range of cell states are functional without minimal promoters. Applied to broadly expressed genes from human and mouse tissues, LSD generates functional housekeeper-like sLCRs compatible with size constraints of AAV vectors for gene therapy applications. A mesenchymal glioblastoma reporter designed by LSD outperforms previously validated ones and canonical cell surface markers. In genome-scale CRISPRa screens, LSD facilitates the discovery of known and novel bona fide cell-state drivers. Thus, LSD captures core principles of cis-regulation and is broadly applicable to studying complex cell states and mechanisms of transcriptional regulation.


Assuntos
DNA , Regulação da Expressão Gênica , Animais , Humanos , Camundongos , Regiões Promotoras Genéticas/genética , Expressão Gênica , Biomarcadores
20.
Science ; 383(6680): eadg7942, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38236961

RESUMO

Long Covid is a debilitating condition of unknown etiology. We performed multimodal proteomics analyses of blood serum from COVID-19 patients followed up to 12 months after confirmed severe acute respiratory syndrome coronavirus 2 infection. Analysis of >6500 proteins in 268 longitudinal samples revealed dysregulated activation of the complement system, an innate immune protection and homeostasis mechanism, in individuals experiencing Long Covid. Thus, active Long Covid was characterized by terminal complement system dysregulation and ongoing activation of the alternative and classical complement pathways, the latter associated with increased antibody titers against several herpesviruses possibly stimulating this pathway. Moreover, markers of hemolysis, tissue injury, platelet activation, and monocyte-platelet aggregates were increased in Long Covid. Machine learning confirmed complement and thromboinflammatory proteins as top biomarkers, warranting diagnostic and therapeutic interrogation of these systems.


Assuntos
Ativação do Complemento , Proteínas do Sistema Complemento , Síndrome de COVID-19 Pós-Aguda , Proteoma , Tromboinflamação , Humanos , Proteínas do Sistema Complemento/análise , Proteínas do Sistema Complemento/metabolismo , Síndrome de COVID-19 Pós-Aguda/sangue , Síndrome de COVID-19 Pós-Aguda/complicações , Síndrome de COVID-19 Pós-Aguda/imunologia , Tromboinflamação/sangue , Tromboinflamação/imunologia , Biomarcadores/sangue , Proteômica , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA