Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 47(9): 2757-2772, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35624196

RESUMO

The structural plasticity of dendritic spines plays a critical role in NMDA-induced long-term potentiation (LTP) in the brain. The small GTPases RhoA and Ras are considered key regulators of spine morphology and enlargement. However, the regulatory interaction between RhoA and Ras underlying NMDA-induced spine enlargement is largely unknown. In this study, we found that Rho-kinase/ROCK, an effector of RhoA, phosphorylated SynGAP1 (a synaptic Ras-GTPase activating protein) at Ser842 and increased its interaction with 14-3-3ζ, thereby activating Ras-ERK signaling in a reconstitution system in HeLa cells. We also found that the stimulation of NMDA receptor by glycine treatment for LTP induction stimulated SynGAP1 phosphorylation, Ras-ERK activation, spine enlargement and SynGAP1 delocalization from the spines in striatal neurons, and these effects were prevented by Rho-kinase inhibition. Rho-kinase-mediated phosphorylation of SynGAP1 appeared to increase its dissociation from PSD95, a postsynaptic scaffolding protein located at postsynaptic density, by forming a complex with 14-3-3ζ. These results suggest that Rho-kinase phosphorylates SynGAP1 at Ser842, thereby activating the Ras-ERK pathway for NMDA-induced morphological changes in dendritic spines.


Assuntos
Espinhas Dendríticas , Potenciação de Longa Duração , Proteínas Ativadoras de ras GTPase , Proteínas 14-3-3/metabolismo , Animais , Espinhas Dendríticas/metabolismo , Células HeLa , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , N-Metilaspartato/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Proteína rhoA de Ligação ao GTP
2.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36613848

RESUMO

The N-methyl-D-aspartate receptor (NMDAR)-mediated structural plasticity of dendritic spines plays an important role in synaptic transmission in the brain during learning and memory formation. The Rho family of small GTPase RhoA and its downstream effector Rho-kinase/ROCK are considered as one of the major regulators of synaptic plasticity and dendritic spine formation, including long-term potentiation (LTP). However, the mechanism by which Rho-kinase regulates synaptic plasticity is not yet fully understood. Here, we found that Rho-kinase directly phosphorylated discs large MAGUK scaffold protein 2 (DLG2/PSD-93), a major postsynaptic scaffold protein that connects postsynaptic proteins with NMDARs; an ionotropic glutamate receptor, which plays a critical role in synaptic plasticity. Stimulation of striatal slices with an NMDAR agonist induced Rho-kinase-mediated phosphorylation of PSD-93 at Thr612. We also identified PSD-93-interacting proteins, including DLG4 (PSD-95), NMDARs, synaptic Ras GTPase-activating protein 1 (SynGAP1), ADAM metallopeptidase domain 22 (ADAM22), and leucine-rich glioma-inactivated 1 (LGI1), by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Among them, Rho-kinase increased the binding of PSD-93 to PSD-95 and NMDARs. Furthermore, we found that chemical-LTP induced by glycine, which activates NMDARs, increased PSD-93 phosphorylation at Thr612, spine size, and PSD-93 colocalization with PSD-95, while these events were blocked by pretreatment with a Rho-kinase inhibitor. These results indicate that Rho-kinase phosphorylates PSD-93 downstream of NMDARs, and suggest that Rho-kinase mediated phosphorylation of PSD-93 increases the association with PSD-95 and NMDARs to regulate structural synaptic plasticity.


Assuntos
Receptores de N-Metil-D-Aspartato , Quinases Associadas a rho , Quinases Associadas a rho/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Proteína 4 Homóloga a Disks-Large/metabolismo , Sinapses/metabolismo , Hipocampo/metabolismo
3.
J Neurochem ; 160(3): 325-341, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34878647

RESUMO

The nucleus accumbens (NAc) plays critical roles in emotional behaviors, including aversive learning. Aversive stimuli such as an electric foot shock increase acetylcholine (ACh) in the NAc, and muscarinic signaling appears to increase neuronal excitability and aversive learning. Muscarinic signaling inhibits the voltage-dependent potassium KCNQ current which regulates neuronal excitability, but the regulatory mechanism has not been fully elucidated. Phosphorylation of KCNQ2 at threonine 217 (T217) and its inhibitory effect on channel activity were predicted. However, whether and how muscarinic signaling phosphorylates KCNQ2 in vivo remains unclear. Here, we found that PKC directly phosphorylated KCNQ2 at T217 in vitro. Carbachol and a muscarinic M1 receptor (M1R) agonist facilitated KCNQ2 phosphorylation at T217 in NAc/striatum slices in a PKC-dependent manner. Systemic administration of the cholinesterase inhibitor donepezil, which is commonly used to treat dementia, and electric foot shock to mice induced the phosphorylation of KCNQ2 at T217 in the NAc, whereas phosphorylation was suppressed by an M1R antagonist. Conditional deletion of Kcnq2 in the NAc enhanced electric foot shock induced aversive learning. Our findings indicate that muscarinic signaling induces the phosphorylation of KCNQ2 at T217 via PKC activation for aversive learning.


Assuntos
Aprendizagem da Esquiva/fisiologia , Canal de Potássio KCNQ2/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Núcleo Accumbens/metabolismo , Sistema Nervoso Parassimpático/fisiologia , Proteína Quinase C/metabolismo , Receptores Muscarínicos/fisiologia , Animais , Carbacol/farmacologia , Inibidores da Colinesterase/farmacologia , Donepezila/farmacologia , Canal de Potássio KCNQ2/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Proteínas do Tecido Nervoso/genética , Fosforilação , Receptor Muscarínico M2/efeitos dos fármacos
4.
Cells ; 11(1)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-35011609

RESUMO

Protein phosphorylation plays critical roles in a variety of intracellular signaling pathways and physiological functions that are controlled by neurotransmitters and neuromodulators in the brain. Dysregulation of these signaling pathways has been implicated in neurodevelopmental disorders, including autism spectrum disorder, attention deficit hyperactivity disorder and schizophrenia. While recent advances in mass spectrometry-based proteomics have allowed us to identify approximately 280,000 phosphorylation sites, it remains largely unknown which sites are phosphorylated by which kinases. To overcome this issue, previously, we developed methods for comprehensive screening of the target substrates of given kinases, such as PKA and Rho-kinase, upon stimulation by extracellular signals and identified many candidate substrates for specific kinases and their phosphorylation sites. Here, we developed a novel online database to provide information about the phosphorylation signals identified by our methods, as well as those previously reported in the literature. The "KANPHOS" (Kinase-Associated Neural Phospho-Signaling) database and its web portal were built based on a next-generation XooNIps neuroinformatics tool. To explore the functionality of the KANPHOS database, we obtained phosphoproteomics data for adenosine-A2A-receptor signaling and its downstream MAPK-mediated signaling in the striatum/nucleus accumbens, registered them in KANPHOS, and analyzed the related pathways.


Assuntos
Encéfalo/metabolismo , Bases de Dados de Proteínas , Neurônios/metabolismo , Proteínas Quinases/metabolismo , Animais , Canais de Cálcio/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , Fosfoproteínas/metabolismo , Fosforilação , Receptor A2A de Adenosina/metabolismo , Especificidade por Substrato
5.
Cell Rep ; 29(10): 3235-3252.e9, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31801086

RESUMO

Dopamine (DA) activates mitogen-activated protein kinase (MAPK) via protein kinase A (PKA)/Rap1 in medium spiny neurons (MSNs) expressing the dopamine D1 receptor (D1R) in the nucleus accumbens (NAc), thereby regulating reward-related behavior. However, how MAPK regulates reward-related learning and memory through gene expression is poorly understood. Here, to identify the relevant transcriptional factors, we perform proteomic analysis using affinity beads coated with cyclic AMP response element binding protein (CREB)-binding protein (CBP), a transcriptional coactivator involved in reward-related behavior. We identify more than 400 CBP-interacting proteins, including Neuronal Per Arnt Sim domain protein 4 (Npas4). We find that MAPK phosphorylates Npas4 downstream of PKA, increasing the Npas4-CBP interaction and the transcriptional activity of Npas4 at the brain-derived neurotrophic factor (BDNF) promoter. The deletion of Npas4 in D1R-expressing MSNs impairs cocaine-induced place preference, which is rescued by Npas4-wild-type (WT), but not by a phospho-deficient Npas4 mutant. These observations suggest that MAPK phosphorylates Npas4 in D1R-MSNs and increases transcriptional activity to enhance reward-related learning and memory.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Expressão Gênica/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células COS , Linhagem Celular , Chlorocebus aethiops , Cocaína/farmacologia , Dopamina/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Proteômica/métodos , Receptores de Dopamina D1/metabolismo , Recompensa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia
6.
Neurochem Int ; 122: 8-18, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30336179

RESUMO

Medium spiny neurons (MSNs) expressing dopamine D1 receptor (D1R) or D2 receptor (D2R) are major components of the striatum. Stimulation of D1R activates protein kinase A (PKA) through Golf to increase neuronal activity, while D2R stimulation inhibits PKA through Gi. Adenosine A2A receptor (A2AR) coupled to Golf is highly expressed in D2R-MSNs within the striatum. However, how dopamine and adenosine co-operatively regulate PKA activity remains largely unknown. Here, we measured Rap1gap serine 563 phosphorylation to monitor PKA activity and examined dopamine and adenosine signals in MSNs. We found that a D1R agonist increased Rap1gap phosphorylation in striatal slices and in D1R-MSNs in vivo. A2AR agonist CGS21680 increased Rap1gap phosphorylation, and pretreatment with the D2R agonist quinpirole blocked this effect in striatal slices. D2R antagonist eticlopride increased Rap1gap phosphorylation in D2R-MSNs in vivo, and the effect of eticlopride was blocked by the pretreatment with the A2AR antagonist SCH58261. These results suggest that adenosine positively regulates PKA in D2R-MSNs through A2AR, while this effect is blocked by basal dopamine in vivo. Incorporating computational model analysis, we propose that the shift from D1R-MSNs to D2R-MSNs or vice versa appears to depend predominantly on a change in dopamine concentration.


Assuntos
Adenosina/metabolismo , Corpo Estriado/metabolismo , Dopamina/metabolismo , Transdução de Sinais , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Agonistas de Dopamina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo
7.
Cell Struct Funct ; 40(2): 95-104, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26119529

RESUMO

Protein phosphorylation plays a key role in regulating nearly all intracellular biological events. However, poorly developed phospho-specific antibodies and low phosphoprotein abundance make it difficult to study phosphoproteins. Cellular protein phosphorylation data have been obtained using phosphoproteomic approaches, but the detection of low-abundance or fast-cycling phosphorylation sites remains a challenge. Enrichment of phosphoproteins together with phosphopeptides may greatly enhance the spectrum of low-abundance but biologically important phosphoproteins. Previously, we used 14-3-3ζ to selectively enrich for HeLa cell lysate phosphoproteins. However, because 14-3-3 does not isolate phosphoproteins lacking the 14-3-3-binding motif, we looked for other domains that could complementarily enrich for phosphoproteins. We here assessed and characterized the phosphoprotein binding domains Pin1-WW, CHEK2-FHA, and DLG1-GK. Using a strategy based on affinity chromatography, phosphoproteins were collected from the lysates of HeLa cells treated with phosphatase inhibitor or cAMP activator. We identified different subsets of phosphoproteins associated with WW or FHA after calyculin A, okadaic acid, or forskolin treatment. Our Kinase-Oriented Substrate Screening (KiOSS) method, which used phosphoprotein-binding domains, showed that WW and FHA are applicable and useful for the identification of novel phospho-substrates for kinases and can therefore be used as biological filters for comprehensive phosphoproteome analysis.


Assuntos
Proteínas 14-3-3/química , Cromatografia de Afinidade/métodos , Fosfoproteínas/isolamento & purificação , Proteômica/métodos , Sequência de Aminoácidos , Extratos Celulares/química , Colforsina/farmacologia , Inibidores Enzimáticos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HeLa , Humanos , Toxinas Marinhas , Anotação de Sequência Molecular , Dados de Sequência Molecular , Ácido Okadáico/farmacologia , Oxazóis/farmacologia , Fosforilação/efeitos dos fármacos , Estrutura Terciária de Proteína , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA