Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Health Secur ; 21(1): 34-45, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36629860

RESUMO

The technological possibilities and future public health importance of metagenomic sequencing have received extensive attention, but there has been little discussion about the policy and regulatory issues that need to be addressed if metagenomic sequencing is adopted as a key technology for biosurveillance. In this article, we introduce metagenomic monitoring as a possible path to eventually replacing current infectious disease monitoring models. Many key enablers are technological, whereas others are not. We therefore highlight key policy challenges and implementation questions that need to be addressed for "widespread metagenomic monitoring" to be possible. Policymakers must address pitfalls like fragmentation of the technological base, private capture of benefits, privacy concerns, the usefulness of the system during nonpandemic times, and how the future systems will enable better response. If these challenges are addressed, the technological and public health promise of metagenomic sequencing can be realized.


Assuntos
Biovigilância , Doenças Transmissíveis , Humanos , Saúde Pública , Política de Saúde
2.
Nat Med ; 27(8): 1367-1369, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34113015

RESUMO

Mass vaccination has the potential to curb the current COVID-19 pandemic by protecting individuals who have been vaccinated against the disease and possibly lowering the likelihood of transmission to individuals who have not been vaccinated. The high effectiveness of the widely administered BNT162b vaccine from Pfizer-BioNTech in preventing not only the disease but also infection with SARS-CoV-2 suggests a potential for a population-level effect, which is critical for disease eradication. However, this putative effect is difficult to observe, especially in light of highly fluctuating spatiotemporal epidemic dynamics. Here, by analyzing vaccination records and test results collected during the rapid vaccine rollout in a large population from 177 geographically defined communities, we find that the rates of vaccination in each community are associated with a substantial later decline in infections among a cohort of individuals aged under 16 years, who are unvaccinated. On average, for each 20 percentage points of individuals who are vaccinated in a given population, the positive test fraction for the unvaccinated population decreased approximately twofold. These results provide observational evidence that vaccination not only protects individuals who have been vaccinated but also provides cross-protection to unvaccinated individuals in the community.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , COVID-19/virologia , Humanos
3.
Clin Infect Dis ; 71(16): 2073-2078, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32358960

RESUMO

BACKGROUND: The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to a current pandemic of unprecedented scale. Although diagnostic tests are fundamental to the ability to detect and respond, overwhelmed healthcare systems are already experiencing shortages of reagents associated with this test, calling for a lean immediately applicable protocol. METHODS: RNA extracts of positive samples were tested for the presence of SARS-CoV-2 using reverse transcription quantitative polymerase chain reaction, alone or in pools of different sizes (2-, 4-, 8-, 16-, 32-, and 64-sample pools) with negative samples. Transport media of additional 3 positive samples were also tested when mixed with transport media of negative samples in pools of 8. RESULTS: A single positive sample can be detected in pools of up to 32 samples, using the standard kits and protocols, with an estimated false negative rate of 10%. Detection of positive samples diluted in even up to 64 samples may also be attainable, although this may require additional amplification cycles. Single positive samples can be detected when pooling either after or prior to RNA extraction. CONCLUSIONS: As it uses the standard protocols, reagents, and equipment, this pooling method can be applied immediately in current clinical testing laboratories. We hope that such implementation of a pool test for coronavirus disease 2019 would allow expanding current screening capacities, thereby enabling the expansion of detection in the community, as well as in close organic groups, such as hospital departments, army units, or factory shifts.


Assuntos
COVID-19/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , COVID-19/virologia , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade
4.
Biotechnol J ; 15(1): e1900286, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31642193

RESUMO

Immunotherapy with T cells expressing chimeric antigen receptors (CAR) is an emerging and promising treatment against refractory cancers. However, the currently adopted methods of modification of T cells pose a risk of insertional oncogenesis because lentiviral and retroviral vectors integrate the CAR transgene in a semi-random fashion. In addition, this therapy is only available using autologous cells, which create problems in production and limit the access for patients who have their T cells depleted. One modification method that shows the ability to overcome both drawbacks is the knock-in of the CAR simultaneously knocking-out genes that prevent allogeneic therapy, such as the endogenous T cell receptor. In this mini-review, the authors present recent efforts to develop safer universal CAR-T cells. More specifically, the combined application of target-directed nucleases, which create a double-strand break at a specific genome locus, and the delivery of CAR DNA via adeno-associated viral vectors for subsequent integration via homologous recombination and silencing of the targeted gene is focused on.


Assuntos
Dependovirus/genética , Edição de Genes/métodos , Receptores de Antígenos Quiméricos/genética , Linfócitos T/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Vetores Genéticos/genética , Humanos , Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos Quiméricos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA