Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cardiovasc Res ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073758

RESUMO

Coronary artery disease (CAD) poses a substantial threat to global health, leading to significant morbidity and mortality worldwide. It has a significant genetic component that has been studied through genome-wide association studies (GWAS) over the past 17 years. These studies have made progress with larger sample sizes, diverse ancestral backgrounds, and the discovery of multiple genomic regions related to CAD risk. In this review, we provide a comprehensive overview of CAD GWAS, including information about the genetic makeup of the disease and the importance of ethnic diversity in these studies. We also discuss challenges of identifying causal genes and variants within GWAS loci with a focus on non-coding regions. Additionally, we highlight tissues and cell types relevant to CAD, and discuss clinical implications of GWAS findings including polygenic risk scores, sex-specific differences in CAD genetics, ethnical aspects of personalized interventions, and GWAS guided drug development.

2.
FEBS Lett ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683017

RESUMO

Genome-wide association studies (GWAS) significantly advanced our understanding of the genetic underpinnings of diseases. However, challenges persist, particularly in interpreting non-coding variants in linkage disequilibrium that affect genes in disease-relevant cells. Addressing key obstacles-identifying causal variants, uncovering target genes, and understanding their network impact-is crucial. This graphical review navigates advanced techniques to fully leverage GWAS for future therapeutic breakthroughs.

3.
Circ Res ; 134(11): 1405-1423, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38639096

RESUMO

BACKGROUND: While our understanding of the single-cell gene expression patterns underlying the transformation of vascular cell types during the progression of atherosclerosis is rapidly improving, the clinical and pathophysiological relevance of these changes remains poorly understood. METHODS: Single-cell RNA sequencing data generated with SmartSeq2 (≈8000 genes/cell) in 16 588 single cells isolated during atherosclerosis progression in Ldlr-/-Apob100/100 mice with human-like plasma lipoproteins and from humans with asymptomatic and symptomatic carotid plaques was clustered into multiple subtypes. For clinical and pathophysiological context, the advanced-stage and symptomatic subtype clusters were integrated with 135 tissue-specific (atherosclerotic aortic wall, mammary artery, liver, skeletal muscle, and visceral and subcutaneous, fat) gene-regulatory networks (GRNs) inferred from 600 coronary artery disease patients in the STARNET (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task) study. RESULTS: Advanced stages of atherosclerosis progression and symptomatic carotid plaques were largely characterized by 3 smooth muscle cells (SMCs), and 3 macrophage subtype clusters with extracellular matrix organization/osteogenic (SMC), and M1-type proinflammatory/Trem2-high lipid-associated (macrophage) phenotypes. Integrative analysis of these 6 clusters with STARNET revealed significant enrichments of 3 arterial wall GRNs: GRN33 (macrophage), GRN39 (SMC), and GRN122 (macrophage) with major contributions to coronary artery disease heritability and strong associations with clinical scores of coronary atherosclerosis severity. The presence and pathophysiological relevance of GRN39 were verified in 5 independent RNAseq data sets obtained from the human coronary and aortic artery, and primary SMCs and by targeting its top-key drivers, FRZB and ALCAM in cultured human coronary artery SMCs. CONCLUSIONS: By identifying and integrating the most gene-rich single-cell subclusters of atherosclerosis to date with a coronary artery disease framework of GRNs, GRN39 was identified and independently validated as being critical for the transformation of contractile SMCs into an osteogenic phenotype promoting advanced, symptomatic atherosclerosis.


Assuntos
Aterosclerose , Redes Reguladoras de Genes , Análise de Célula Única , Humanos , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Camundongos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Masculino , Placa Aterosclerótica , Progressão da Doença , Feminino , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Knockout , Receptores de LDL/genética , Receptores de LDL/metabolismo , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia
4.
Arterioscler Thromb Vasc Biol ; 44(4): 898-914, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328934

RESUMO

BACKGROUND: Smooth muscle cells (SMCs), which make up the medial layer of arteries, are key cell types involved in cardiovascular disease, the leading cause of mortality and morbidity worldwide. In response to microenvironment alterations, SMCs dedifferentiate from a contractile to a synthetic phenotype characterized by an increased proliferation, migration, production of ECM (extracellular matrix) components, and decreased expression of SMC-specific contractile markers. These phenotypic changes result in vascular remodeling and contribute to the pathogenesis of cardiovascular disease, including coronary artery disease, stroke, hypertension, and aortic aneurysms. Here, we aim to identify the genetic variants that regulate ECM secretion in SMCs and predict the causal proteins associated with vascular disease-related loci identified in genome-wide association studies. METHODS: Using human aortic SMCs from 123 multiancestry healthy heart transplant donors, we collected the serum-free media in which the cells were cultured for 24 hours and conducted liquid chromatography-tandem mass spectrometry-based proteomic analysis of the conditioned media. RESULTS: We measured the abundance of 270 ECM and related proteins. Next, we performed protein quantitative trait locus mapping and identified 20 loci associated with secreted protein abundance in SMCs. We functionally annotated these loci using a colocalization approach. This approach prioritized the genetic variant rs6739323-A at the 2p22.3 locus, which is associated with lower expression of LTBP1 (latent-transforming growth factor beta-binding protein 1) in SMCs and atherosclerosis-prone areas of the aorta, and increased risk for SMC calcification. We found that LTBP1 expression is abundant in SMCs, and its expression at mRNA and protein levels was reduced in unstable and advanced atherosclerotic plaque lesions. CONCLUSIONS: Our results unravel the SMC proteome signature associated with vascular disorders, which may help identify potential therapeutic targets to accelerate the pathway to translation.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/metabolismo , Estudo de Associação Genômica Ampla , Proteômica , Músculo Liso Vascular/metabolismo , Aorta/metabolismo , Aterosclerose/patologia , Miócitos de Músculo Liso/metabolismo , Células Cultivadas
5.
Cardiovasc Res ; 120(8): 869-882, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38289873

RESUMO

AIMS: Vascular smooth muscle cells (SMCs) and their derivatives are key contributors to the development of atherosclerosis. However, studying changes in SMC gene expression in heterogeneous vascular tissues is challenging due to the technical limitations and high cost associated with current approaches. In this paper, we apply translating ribosome affinity purification sequencing to profile SMC-specific gene expression directly from tissue. METHODS AND RESULTS: To facilitate SMC-specific translatome analysis, we generated SMCTRAP mice, a transgenic mouse line expressing enhanced green fluorescent protein (EGFP)-tagged ribosomal protein L10a (EGFP-L10a) under the control of the SMC-specific αSMA promoter. These mice were further crossed with the atherosclerosis model Ldlr-/-, ApoB100/100 to generate SMCTRAP-AS mice and used to profile atherosclerosis-associated SMCs in thoracic aorta samples of 15-month-old SMCTRAP and SMCTRAP-AS mice. Our analysis of SMCTRAP-AS mice showed that EGFP-L10a expression was localized to SMCs in various tissues, including the aortic wall and plaque. The TRAP fraction demonstrated high enrichment of known SMC-specific genes, confirming the specificity of our approach. We identified several genes, including Cemip, Lum, Mfge8, Spp1, and Serpina3, which are known to be involved in atherosclerosis-induced gene expression. Moreover, we identified several novel genes not previously linked to SMCs in atherosclerosis, such as Anxa4, Cd276, inter-alpha-trypsin inhibitor-4 (Itih4), Myof, Pcdh11x, Rab31, Serpinb6b, Slc35e4, Slc8a3, and Spink5. Among them, we confirmed the SMC-specific expression of Itih4 in atherosclerotic lesions using immunofluorescence staining of mouse aortic roots and spatial transcriptomics of human carotid arteries. Furthermore, our more detailed analysis of Itih4 showed its link to coronary artery disease through the colocalization of genome-wide association studies, splice quantitative trait loci (QTL), and protein QTL signals. CONCLUSION: We generated a SMC-specific TRAP mouse line to study atherosclerosis and identified Itih4 as a novel SMC-expressed gene in atherosclerotic plaques, warranting further investigation of its putative function in extracellular matrix stability and genetic evidence of causality.


Assuntos
Doenças da Aorta , Aterosclerose , Modelos Animais de Doenças , Músculo Liso Vascular , Miócitos de Músculo Liso , Placa Aterosclerótica , Proteínas Ribossômicas , Animais , Feminino , Humanos , Masculino , Camundongos , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/metabolismo , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fenótipo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Transcriptoma
6.
Cells ; 12(24)2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38132141

RESUMO

Coronary artery calcification (CAC) is mainly associated with coronary atherosclerosis, which is an indicator of coronary artery disease (CAD). CAC refers to the accumulation of calcium phosphate deposits, classified as micro- or macrocalcifications, that lead to the hardening and narrowing of the coronary arteries. CAC is a strong predictor of future cardiovascular events, such as myocardial infarction and sudden death. Our narrative review focuses on the pathophysiology of CAC, exploring its link to plaque vulnerability, genetic factors, and how race and sex can affect the condition. We also examined the connection between the gut microbiome and CAC, and the impact of genetic variants on the cellular processes involved in vascular calcification and atherogenesis. We aimed to thoroughly analyze the existing literature to improve our understanding of CAC and its potential clinical and therapeutic implications.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Infarto do Miocárdio , Placa Aterosclerótica , Humanos , Doença da Artéria Coronariana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA