Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 345: 123431, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301821

RESUMO

Faecal Indicator Organism (FIO) concentrations in nearshore coastal waters may lead to significant public health concerns and economic loss. A three-dimensional numerical source-receptor connectivity study was conducted to improve the modelling of FIO transport and decay processes and identify major FIO sources impacting sensitive receptors (source apportionment). The study site was Swansea Bay, UK and the effects of wind, density, and tracer microbe (surrogate FIO) decay models were investigated by comparing the model simulations to microbial tracer field studies. The relevance of connectivity tests to source apportionment was demonstrated by hindcasting FIO concentration in Swansea Bay with the identified FIO source and the Impulse Response Function (IRF) in Control System theory. This is the first time the IRF approach has been applied for FIO modelling in bathing waters. Results show the importance of density, widely ignored in fully mixed water bodies, and the potential for biphasic decay models to improve prediction accuracy. The microbe-carrying riverine freshwater, having a smaller hydrostatic pressure, could not intrude on the heavier seawater and remained in the nearshore areas. The freshwater and the associated tracer microbes then travelled along the shoreline and reached bathing water sites. This effect cannot be faithfully modelled without the inclusion of the density effect. Biphasic decay models improved the agreement between measured and modelled microbe concentrations. The IRF hindcasted and measured FIO concentrations for Swansea Bay agreed reasonably, demonstrating the importance of connectivity tests in identifying key FIO sources. The findings of this study, namely enhancing hydro-epidemiological modelling and highlighting the effectiveness of connectivity studies in identifying key FIO sources, directly benefit hydraulics and water quality modellers, regulatory authorities, water resource managers and policy.


Assuntos
Água Doce , Qualidade da Água , Água do Mar , Saúde Pública , Monitoramento Ambiental/métodos , Fezes , Microbiologia da Água
2.
Environ Pollut ; 343: 123225, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38151091

RESUMO

Europe's ageing wastewater system often combines domestic sewage with surface runoff and industrial wastewaters. To reduce the associated risk of overloading wastewater treatment works during storms, and to prevent wastewater backing-up into properties, Combined Sewer Overflows (CSOs) are designed into wastewater networks to release excess discharge into rivers or coastal waters without treatment. In view of growing regulatory scrutiny and increasing public concern about their excessive discharge frequencies and potential impacts on environments and people, there is a need to better understand these impacts to allow prioritisation of cost-effective solutions.We review: i) the chemical, physical and biological composition of CSOs discharges; ii) spatio-temporal variations in the quantity, quality and load of overflows spilling into receiving waters; iii) the potential impacts on people, ecosystems and economies. Despite investigations illustrating the discharge frequency of CSOs, data on spill composition and loading of pollutants are too few to reach representative conclusions, particularly for emerging contaminants. Studies appraising impacts are also scarce, especially in contexts where there are multiple stressors affecting receiving waters. Given the costs of addressing CSOs problems, but also the likely long-term gains (e.g. economic stimulation as well as improvements to biodiversity, ecosystem services, public health and wellbeing), we highlight here the need to bolster these evidence gaps. We also advocate no-regrets options to alleviate CSO problems taking into consideration economic costs, carbon neutrality, ecosystem benefit and community well-being. Besides pragmatic, risk-based investment by utilities and local authorities to modernise wastewater systems, these include i) more systemic thinking, linking policy makers, consumers, utilities and regulators, to shift from local CSO issues to integrated catchment solutions with the aim of reducing contributions to wastewater from surface drainage and water consumption; ii) broader societal responsibilities for CSOs, for example through improved regulation, behavioural changes in water consumption and disposal of waste into wastewater networks, and iii) greater cost-sharing of wastewater use.


Assuntos
Ecossistema , Águas Residuárias , Humanos , Monitoramento Ambiental , Esgotos/química , Rios/química
3.
Environ Pollut ; 336: 122456, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673321

RESUMO

The COVID-19 pandemic has significantly impacted various aspects of life, including environmental conditions. Surface water quality (WQ) is one area affected by lockdowns imposed to control the virus's spread. Numerous recent studies have revealed the considerable impact of COVID-19 lockdowns on surface WQ. In response, this research aimed to assess the impact of COVID-19 lockdowns on surface water quality in Ireland using an advanced WQ model. To achieve this goal, six years of water quality monitoring data from 2017 to 2022 were collected for nine water quality indicators in Cork Harbour, Ireland, before, during, and after the lockdowns. These indicators include pH, water temperature (TEMP), salinity (SAL), biological oxygen demand (BOD5), dissolved oxygen (DOX), transparency (TRAN), and three nutrient enrichment indicators-dissolved inorganic nitrogen (DIN), molybdate reactive phosphorus (MRP), and total oxidized nitrogen (TON). The results showed that the lockdown had a significant impact on various WQ indicators, particularly pH, TEMP, TON, and BOD5. Over the study period, most indicators were within the permissible limit except for MRP, with the exception of during COVID-19. During the pandemic, TON and DIN decreased, while water transparency significantly improved. In contrast, after COVID-19, WQ at 7% of monitoring sites significantly deteriorated. Overall, WQ in Cork Harbour was categorized as "good," "fair," and "marginal" classes over the study period. Compared to temporal variation, WQ improved at 17% of monitoring sites during the lockdown period in Cork Harbour. However, no significant trend in WQ was observed. Furthermore, the study analyzed the advanced model's performance in assessing the impact of COVID-19 on WQ. The results indicate that the advanced WQ model could be an effective tool for monitoring and evaluating lockdowns' impact on surface water quality. The model can provide valuable information for decision-making and planning to protect aquatic ecosystems.

4.
Sci Total Environ ; 827: 154098, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35218834

RESUMO

In order to accurately simulate the whole urban flooding processes and assess the flood risks to people and vehicles in floodwaters, a 2D-surface and a 1D-sewer integrated hydrodynamic model was proposed in this study, with the module of flood risk assessment of people and vehicles being included. The proposed model was firstly validated by a dual-drainage laboratory experiment on the flood inundation process over a typical urban street, and the relative importance of model parameters and model uncertainties were evaluated using the GSA-GLUE method. Then the model was applied to simulate an actual urban flooding process that occurred in Glasgow, UK, with the influence of the sewer drainage system on flood inundation processes and hazard degree distributions of people and vehicles being comprehensively discussed. The following conclusions are drawn from this study: (i) The proposed model has a high degree of accuracy with the NSE values of key hydraulic variables greater than 0.8 and the GSA indicates that Manning roughness coefficients for surface and sewer flows, inlet weir and orifice discharge coefficients, are the most relevant parameters to influence the simulated results; (ii) vehicles are vulnerable to larger water depths while human stability is significantly influenced by higher flow velocities, with the overall flood risk of people being less than that of vehicles; and (iii) about 88.7% of the total inflow volume was drained to the sewer network, and the sewer drainage system greatly reduced the flood risks to people and vehicles except the local areas with large inundation water depths, where the sewer drainage increased the local flow velocity leading to higher flood risks especially for people.


Assuntos
Inundações , Hidrodinâmica , Humanos , Modelos Teóricos , Medição de Risco , Água
5.
Water Res ; 196: 117049, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33774350

RESUMO

In recent years, society has become more aware and concerned with the environmental and human health impacts of population growth and urbanisation. In response, a number of legislative measures have been introduced within Europe (and globally), which have sparked much cross-disciplinary research aimed at predicting and quantifying these impacts, and suggesting mitigation measures. In response to such measures this paper is focused on improving current understanding of, and simulating water quality, in the form of bacterial transport and decay, in the aquatic environment and particularly in macro-tidal environments. A number of 2D and 3D hydro-epidemiological models were developed using the TELEMAC suite to predict faecal bacterial levels for a data rich pilot site, namely Swansea Bay, located in the south west of the UK, where more than 7,000 FIO samples were taken and analysed over a two year period. A comparison of 2D and 3D modelling approaches highlights the importance of accurately representing source momentum terms in hydro-epidemiological models. Improvements in 2D model bacterial concentration predictions were achieved by the application of a novel method for representing beach sources within the nearshore zone of a macro-tidal environment. In addition, the use of a depth-varying decay rate was found to enhance the prediction of Faecal Indicator Organism concentrations in 3D models. Recommendations are made for the use of these novel approaches in future modelling studies.


Assuntos
Microbiologia da Água , Qualidade da Água , Bactérias , Praias , Monitoramento Ambiental , Europa (Continente) , Fezes , Humanos
6.
Water Res ; 123: 802-824, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28750330

RESUMO

The Loughor Estuary is a macro-tidal coastal basin, located along the Bristol Channel, in the South West of the U.K. The maximum spring tidal range in the estuary is up to 7.5 m, near Burry Port Harbour. This estuarine region can experience severe coastal flooding during high spring tides, including extreme flooding of the intertidal saltmarshes at Llanrhidian, as well as the lower industrial and residential areas at Llanelli and Gowerton. The water quality of this estuarine basin needs to comply with the designated standards for safe recreational bathing and shellfish harvesting industries. The waterbody however, potentially receives overloading of bacterial inputs that enter the estuarine system from both point and diffuse sources. Therefore, a microbial tracer study was carried out to get a better understanding of the faecal bacteria sources and to enable a hydro-environmental model to be refined and calibrated for both advection and dispersion transport. A two-dimensional hydro-environmental model has been refined and extended to predict the highest water level covering the intertidal floodplains of the Loughor Estuary. The validated hydrodynamic model for both water levels and currents, was included with the injected mass of microbial tracer, i.e. MS2 coliphage from upstream of the estuary, and modelled as a non-conservative tracer over several tidal cycles through the system. The calibration and validation of the transport and decay of microbial tracer was undertaken, by comparing the model results and the measured data at two different sampling locations. The refined model developed as a part of this study, was used to acquire a better understanding of the water quality processes and the potential sources of bacterial pollution in the estuary.


Assuntos
Monitoramento Ambiental , Estuários , Qualidade da Água , Bactérias , Fezes , Recreação , Estações do Ano , Movimentos da Água
7.
Am J Med Genet A ; 167A(8): 1741-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25900621

RESUMO

"The Third International Meeting on Genetic Disorders in the RAS/MAPK Pathway: Towards a Therapeutic Approach" was held at the Renaissance Orlando at SeaWorld Hotel (August 2-4, 2013). Seventy-one physicians and scientists attended the meeting, and parallel meetings were held by patient advocacy groups (CFC International, Costello Syndrome Family Network, NF Network and Noonan Syndrome Foundation). Parent and patient advocates opened the meeting with a panel discussion to set the stage regarding their hopes and expectations for therapeutic advances. In keeping with the theme on therapeutic development, the sessions followed a progression from description of the phenotype and definition of therapeutic endpoints, to definition of genomic changes, to identification of therapeutic targets in the RAS/MAPK pathway, to preclinical drug development and testing, to clinical trials. These proceedings will review the major points of discussion.


Assuntos
Doenças Genéticas Inatas/genética , Sistema de Sinalização das MAP Quinases , Proteínas ras/metabolismo , Doenças Genéticas Inatas/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA