Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Lipid Res ; 64(9): 100423, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558128

RESUMO

Biallelic pathogenic variants of the Sar1b gene cause chylomicron retention disease (CRD) whose central phenotype is the inability to secrete chylomicrons. Patients with CRD experience numerous clinical symptoms such as gastrointestinal, hepatic, neuromuscular, ophthalmic, and cardiological abnormalities. Recently, the production of mice expressing either a targeted deletion or mutation of Sar1b recapitulated biochemical and gastrointestinal defects associated with CRD. The present study was conducted to better understand little-known aspects of Sar1b mutations, including mouse embryonic development, lipid profile, and lipoprotein composition in response to high-fat diet, gut and liver cholesterol metabolism, sex-specific effects, and genotype-phenotype differences. Sar1b deletion and mutation produce a lethal phenotype in homozygous mice, which display intestinal lipid accumulation without any gross morphological abnormalities. On high-fat diet, mutant mice exhibit more marked abnormalities in body composition, adipose tissue and liver weight, plasma cholesterol, non-HDL cholesterol and polyunsaturated fatty acids than those on the regular Chow diet. Divergences were also noted in lipoprotein lipid composition, lipid ratios (serving as indices of particle size) and lipoprotein-apolipoprotein distribution. Sar1b defects significantly reduce gut cholesterol accumulation while altering key players in cholesterol metabolism. Noteworthy, variations were observed between males and females, and between Sar1b deletion and mutation phenotypes. Overall, mutant animal findings reveal the importance of Sar1b in several biochemical, metabolic and developmental processes.


Assuntos
Dieta Hiperlipídica , Desenvolvimento Embrionário , Proteínas Monoméricas de Ligação ao GTP , Animais , Feminino , Humanos , Masculino , Camundongos , Colesterol/metabolismo , Quilomícrons/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética
2.
Antioxidants (Basel) ; 12(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36670951

RESUMO

While the prevalence of metabolic syndrome (MetS) is steadily increasing worldwide, no optimal pharmacotherapy is readily available to address its multifaceted risk factors and halt its complications. This growing challenge mandates the development of other future curative directions. The purpose of the present study is to investigate the efficacy of cranberry proanthocyanidins (PACs) in improving MetS pathological conditions and liver complications; C57BL/6J mice were fed either a standard chow or a high fat/high sucrose (HFHS) diet with and without PACs (200 mg/kg), delivered by daily gavage for 12 weeks. Our results show that PACs lowered HFHS-induced obesity, insulin resistance, and hyperlipidemia. In conjunction, PACs lessened circulatory markers of oxidative stress (OxS) and inflammation. Similarly, the anti-oxidative and anti-inflammatory capacities of PACs were noted in the liver in association with improved hepatic steatosis. Inhibition of lipogenesis and stimulation of beta-oxidation could account for PACs-mediated decline of fatty liver as evidenced not only by the expression of rate-limiting enzymes but also by the status of AMPKα (the key sensor of cellular energy) and the powerful transcription factors (PPARα, PGC1α, SREBP1c, ChREBP). Likewise, treatment with PACs resulted in the downregulation of critical enzymes of liver gluconeogenesis, a process contributing to increased rates of glucose production in type 2 diabetes. Our findings demonstrate that PACs prevented obesity and improved insulin resistance likely via suppression of OxS and inflammation while diminishing hyperlipidemia and fatty liver disease, as clear evidence for their strength of fighting the cluster of MetS abnormalities.

3.
Biomedicines ; 9(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34572325

RESUMO

BACKGROUND AND AIMS: The increasing prevalence and absence of effective global treatment for metabolic syndrome (MetS) are alarming given the potential progression to severe non-communicable disorders such as type 2 diabetes and nonalcoholic fatty liver disease. The purpose of this study was to investigate the regulatory role of glycomacropeptide (GMP), a powerful milk peptide, in insulin resistance and liver dysmetabolism, two central MetS conditions. MATERIALS AND METHODS: C57BL/6 male mice were fed a chow (Ctrl), high-fat, high-sucrose (HFHS) diet or HFHS diet along with GMP (200 mg/kg/day) administered by gavage for 12 weeks. RESULTS: GMP lowered plasma insulin levels (in response to oral glucose tolerance test) and HOMA-IR index, indicating a more elevated systemic insulin sensitivity. GMP was also able to decrease oxidative stress and inflammation in the circulation as reflected by the decline of malondialdehyde, F2 isoprostanes and lipopolysaccharide. In the liver, GMP raised the protein expression of the endogenous anti-oxidative enzyme GPx involving the NRF2 signaling pathway. Moreover, the administration of GMP reduced the gene expression of hepatic pro-inflammatory COX-2, TNF-α and IL-6 via inactivation of the TLR4/NF-κB signaling pathway. Finally, GMP improved hepatic insulin sensitization given the modulation of AKT, p38 MAPK and SAPK/JNK activities, thereby restoring liver homeostasis as revealed by enhanced fatty acid ß-oxidation, reduced lipogenesis and gluconeogenesis. CONCLUSIONS: Our study provides evidence that GMP represents a promising dietary nutraceutical in view of its beneficial regulation of systemic insulin resistance and hepatic insulin signaling pathway, likely via its powerful antioxidant and anti-inflammatory properties.

4.
J Lipid Res ; 62: 100085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33964306

RESUMO

Chylomicron retention disease (CRD) is an autosomal recessive disorder associated with biallelic Sar1b mutations leading to defects in intracellular chylomicron (CM) trafficking and secretion. To date, a direct cause-effect relationship between CRD and Sar1b mutation has not been established, but genetically modified animal models provide an opportunity to elucidate unrecognized aspects of these mutations. To examine the physiological role and molecular mechanisms of Sar1b function, we generated mice expressing either a targeted deletion or mutation of human Sar1b using the CRISPR-Cas9 system. We found that deletion or mutation of Sar1b in mice resulted in late-gestation lethality of homozygous embryos. Moreover, compared with WT mice, heterozygotes carrying a single disrupted Sar1b allele displayed lower plasma levels of triglycerides, total cholesterol, and HDL-cholesterol, along with reduced CM secretion following gastric lipid gavage. Similarly, decreased expression of apolipoprotein B and microsomal triglyceride transfer protein was observed in correlation with the accumulation of mucosal lipids. Inefficient fat absorption in heterozygotes was confirmed via an increase in fecal lipid excretion. Furthermore, genetically modified Sar1b affected intestinal lipid homeostasis as demonstrated by enhanced fatty acid ß-oxidation and diminished lipogenesis through the modulation of transcription factors. This is the first reported mammalian animal model with human Sar1b genetic defects, which reproduces some of the characteristic CRD features and provides a direct cause-effect demonstration.


Assuntos
Hipobetalipoproteinemias , Síndromes de Malabsorção
5.
Sci Rep ; 11(1): 3878, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594093

RESUMO

Recent advances have added another dimension to the complexity of cardiometabolic disorders (CMD) by directly implicating the gastrointestinal tract as a key player. In fact, multiple factors could interfere with intestinal homeostasis and elicit extra-intestinal CMD. As oxidative stress (OxS), inflammation, insulin resistance and lipid abnormalities are among the most disruptive events, the aim of the present study is to explore whether proanthocyanidins (PACs) exert protective effects against these disorders. To this end, fully differentiated intestinal Caco-2/15 cells were pre-incubated with PACs with and without the pro-oxidant and pro-inflammatory iron/ascorbate (Fe/Asc). PACs significantly reduce malondialdehyde, a biomarker of lipid peroxidation, and raise antioxidant SOD2 and GPx via the increase of NRF2/Keap1 ratio. Likewise, PACs decrease the inflammatory agents TNFα and COX2 through abrogation of NF-κB. Moreover, according to crucial biomarkers, PACs result in lipid homeostasis improvement as reflected by enhanced fatty acid ß-oxidation, diminished lipogenesis, and lowered gluconeogenesis as a result of PPARα, γ and SREBP1c modulation. Since these metabolic routes are mainly regulated by insulin sensitivity, we have examined the insulin signaling pathway and found an upregulation of phosphoPI3K/Akt and downregulation of p38-MAPK expressions, indicating beneficial effects in response to PACs. Taken together, PACs display the potential to counterbalance OxS and inflammation in Fe/Asc-exposed intestinal cells, in association with an improvement of insulin sensitivity, which ameliorates lipid and glucose homeostasis.


Assuntos
Inflamação/tratamento farmacológico , Resistência à Insulina , Estresse Oxidativo/efeitos dos fármacos , Proantocianidinas/uso terapêutico , Células CACO-2 , Metabolismo dos Carboidratos/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Intestinos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Proantocianidinas/farmacologia
6.
Nutrients ; 12(4)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331475

RESUMO

BACKGROUND: Metabolic Syndrome (MetS), a major worldwide concern for the public health system, refers to a cluster of key metabolic components, and represents a risk factor for diabetes and cardiovascular diseases. As oxidative stress (OxS) and inflammation are the major triggers of insulin sensitivity (IS), a cardinal MetS feature, the principal aim of the present work is to determine whether glycomacropeptide (GMP), a milk-derived bioactive peptide, exerts beneficial effects on their expression. METHODS: Fully differentiated intestinal Caco-2/15 cells are used to evaluate the preventive action of 2 mg/mL GMP against OxS and inflammation induced by the mixture iron-ascorbate (Fe/Asc) (200 µM:2 mM). The potency of GMP of decreasing the production of lipoproteins, including chylomicrons (CM), very-low-density lipoproteins (VLDL) and low-density lipoproteins (LDL) is also assessed. RESULTS: The administration of GMP significantly reduces malondialdehyde, a biomarker of lipid peroxidation, and raises superoxide dismutase 2 and glutathione peroxidase via the induction of the nuclear factor erythroid 2-related factor 2, a transcription factor, which orchestrates cellular antioxidant defenses. Similarly, GMP markedly lowers the inflammatory agents tumor necrosis factor-α and cyclooxygenase-2 via abrogation of the nuclear transcription factor-kB. Moreover, GMP-treated cells show a down-regulation of Fe/Asc-induced mitogen activated protein kinase pathway, suggesting greater IS. Finally, GMP decreases the production of CM, VLDL, and LDL. CONCLUSIONS: Our results highlight the effectiveness of GMP in attenuating OxS, inflammation and lipoprotein biogenesis, as well as improving IS, the key components of MetS. Further investigation is needed to elucidate the mechanisms mediating the preventive action of GMP.


Assuntos
Ácido Ascórbico/efeitos adversos , Caseínas/farmacologia , Inflamação/prevenção & controle , Resistência à Insulina , Mucosa Intestinal/metabolismo , Ferro/efeitos adversos , Lipoproteínas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Células CACO-2 , Glutationa Peroxidase/metabolismo , Humanos , Inflamação/etiologia , Mediadores da Inflamação/metabolismo , Malondialdeído/metabolismo , Síndrome Metabólica/etiologia , Síndrome Metabólica/prevenção & controle , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Superóxido Dismutase/metabolismo
7.
J Lipid Res ; 60(10): 1755-1764, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31409740

RESUMO

Genetic defects in SAR1B GTPase inhibit chylomicron (CM) trafficking to the Golgi and result in a huge intraenterocyte lipid accumulation with a failure to release CMs and liposoluble vitamins into the blood circulation. The central aim of this study is to test the hypothesis that SAR1B deletion (SAR1B-/- ) disturbs enterocyte lipid homeostasis (e.g., FA ß-oxidation and lipogenesis) while promoting oxidative stress and inflammation. Another issue is to compare the impact of SAR1B-/- to that of its paralogue SAR1A-/- and combined SAR1A-/- /B-/- To address these critical issues, we have generated Caco-2/15 cells with a knockout of SAR1A, SAR1B, or SAR1A/B genes. SAR1B-/- results in lipid homeostasis disruption, reflected by enhanced mitochondrial FA ß-oxidation and diminished lipogenesis in intestinal absorptive cells via the implication of PPARα and PGC1α transcription factors. Additionally, SAR1B-/- cells, which mimicked enterocytes of CM retention disease, spontaneously disclosed inflammatory and oxidative characteristics via the implication of NF-κB and NRF2. In most conditions, SAR1A-/- cells showed a similar trend, albeit less dramatic, but synergetic effects were observed with the combined defects of the two SAR1 paralogues. In conclusion, SAR1B and its paralogue are needed not only for CM trafficking but also for lipid homeostasis, prooxidant/antioxidant balance, and protection against inflammatory processes.


Assuntos
Homeostase , Mucosa Intestinal/enzimologia , Metabolismo dos Lipídeos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Células CACO-2 , Ácidos Graxos/metabolismo , Regulação Enzimológica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Inflamação/enzimologia , Inflamação/metabolismo , Inflamação/patologia , Peroxidação de Lipídeos , Proteínas Monoméricas de Ligação ao GTP/deficiência , Proteínas Monoméricas de Ligação ao GTP/genética , Perilipina-2/genética , Perilipina-2/metabolismo
8.
Can J Physiol Pharmacol ; 91(1): 71-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23368419

RESUMO

The results of our study show that whole-cell and nuclear levels of NADPH oxidase-1 (NOX1) are similar in human vascular endothelial cells (hVECs) and smooth muscle cells (hVSMCs), but lower in human endocardial endothelial cells (hEECs). NOX2 levels were higher in hVECs and lower in hVSMCs. NOX3 levels were the same in hVECs and hVSMCs, but lower in hEECs. NOX4 levels were similar in all of the cell types. NOX4 levels were higher in hVECs than in hVSMCs. NOX5 was also present throughout the 3 cell types, including their nuclei, in the following order: hEECs > hVSMCs > hVECs. The level of basal reactive oxygen species (ROS) was highest in hVECs and lowest in hVSMCs. However, the Ca(2+) level was highest in hVSMCs and lowest in hVECs. These findings suggest that all types of NOXs exist in hEECs, hVECs, and hVSMCs, although their density and distribution are cell-type dependent. The density of the different NOXs correlated with the ROS level, but not with the Ca(2+) level. In conclusion, NOXs, including NOX3, exist in cardiovascular cells and their nuclei. The nucleus is a major source of ROS generation. The nuclear NOXs may contribute to ROS and Ca(2+) homeostasis, which may affect cell remodeling, including the formation of nuclear T-tubules in vascular diseases and aging.


Assuntos
Núcleo Celular/enzimologia , Endocárdio/enzimologia , Células Endoteliais/enzimologia , Endotélio Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , NADPH Oxidases/metabolismo , Cálcio/metabolismo , Células Cultivadas , Endocárdio/citologia , Células Endoteliais/citologia , Endotélio Vascular/citologia , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Miócitos de Músculo Liso/citologia , Espécies Reativas de Oxigênio/metabolismo
9.
Neuropeptides ; 46(6): 373-82, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23107364

RESUMO

The aim of the study was to test the hypothesis that neuropeptide Y (NPY) may induce endothelin-1 (ET-1) secretion in left (hLEECs) and right (hREECs) human endocardial endothelial cells. Furthermore, the type of NPY receptor implicated could be different in NPY-induced secretion in hLEECs and hREECs. Using immunofluorescence coupled to real 3D confocal microscopy and ELISA, our results showed that stimulation of secretion by NPY induced the release of ET-1 from both right and left human ventricular endocardial endothelial cells (hEECs) in a time-dependent manner. Furthermore, the secretory capacity of hREECs was higher than that of hLEECs. In addition, our results showed that the effect of NPY on ET-1 secretion in hLEECs was only due to activation of Y(5) receptors. However, the effect of NPY on ET-1 secretion in hREECs was due to mainly Y(2) and partially Y(5) receptors activation. In conclusion, our results suggest that differences in excitation-secretion coupling exist between hREECS and hLEECs which may contribute to the functional differences between right and left ventricular muscle. Furthermore, high NPY level contributes to ET-1 release by hEECs and Y(2) and Y(5) receptors antagonists may be used for regulation of ET-1 secretion in the heart.


Assuntos
Endocárdio/metabolismo , Células Endoteliais/metabolismo , Endotelina-1/metabolismo , Neuropeptídeo Y/farmacologia , Arginina/análogos & derivados , Arginina/farmacologia , Endocárdio/citologia , Endocárdio/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Imuno-Histoquímica , Microscopia Confocal , Neuropeptídeo Y/metabolismo , Radioimunoensaio , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Receptores de Neuropeptídeo Y/efeitos dos fármacos , Receptores de Neuropeptídeo Y/fisiologia
10.
Can J Physiol Pharmacol ; 90(8): 953-65, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22783834

RESUMO

Work from our group and other laboratories showed that the nucleus could be considered as a cell within a cell. This is based on growing evidence of the presence and role of nuclear membrane G-protein coupled receptors and ionic transporters in the nuclear membranes of many cell types, including vascular endothelial cells, endocardial endothelial cells, vascular smooth muscle cells, cardiomyocytes, and hepatocytes. The nuclear membrane receptors were found to modulate the functioning of ionic transporters at the nuclear level, and thus contribute to regulation of nuclear ionic homeostasis. Nuclear membranes of the mentioned types of cells possess the same ionic transporters; however, the type of receptors is cell-type dependent. Regulation of cytosolic and nuclear ionic homeostasis was found to be dependent upon a tight crosstalk between receptors and ionic transporters of the plasma membranes and those of the nuclear membrane. This crosstalk seems to be the basis for excitation-contraction coupling, excitation-secretion coupling, and excitation - gene expression coupling. Further advancement in this field will certainly shed light on the role of nuclear membrane receptors and transporters in health and disease. This will in turn enable the successful design of a new class of drugs that specifically target such highly vital nuclear receptors and ionic transporters.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Proteínas de Membrana Transportadoras/metabolismo , Membrana Nuclear/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Células Endoteliais/metabolismo , Hepatócitos/metabolismo , Homeostase , Humanos , Modelos Biológicos , Músculo Liso Vascular/metabolismo , Miócitos Cardíacos/metabolismo , Receptor Cross-Talk
11.
Can J Physiol Pharmacol ; 86(8): 546-56, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18758503

RESUMO

Our previous work showed that ET-1 induced a concentration-dependent increase of cytosolic Ca2+ ([Ca]c) and nuclear Ca2+ ([Ca]n) in human aortic vascular smooth muscle cells (hVSMCs). In the present study, using hVSMCs and 3-dimensional confocal microscopy coupled to the Ca2+ fluorescent probe Fluo-3, we showed that peptidic antagonists of ETA and ETB receptors (BQ-123 (10(-6) mol/L) and BQ-788 (10(-7) mol/L), respectively) prevented, but did not reverse, ET-1-induced sustained increase of [Ca]c and [Ca]n. In contrast, nonpeptidic antagonists of ETA and ETB (respectively, BMS-182874 (10(-8)-10(-6) mol/L) and A-192621 (10(-7) mol/L)) both prevented and reversed ET-1-induced sustained increase of [Ca]c and [Ca]n. Furthermore, activation of the ETB receptor alone using the specific agonist IRL-1620 (10(-9) mol/L) induced sustained increases of [Ca]c and [Ca]n, and subsequent administration of ET-1 (10(-7) mol/L) further increased nuclear Ca2+. ET-1-induced increase of [Ca]c and [Ca]n was completely blocked by extracellular application of the Ca2+ chelator EGTA. Pretreatment with the G protein inhibitors pertussis toxin (PTX) and cholera toxin (CTX) also prevented the ET-1 response; however, strong membrane depolarization with KCl (30 mmol/L) subsequently induced sustained increase of [Ca]c and [Ca]n. Pretreatment of hVSMCs with either the PKC activator phorbol-12,13-dibutyrate or the PKC inhibitor bisindolylmaleimide did not affect ET-1-induced sustained increase of intracellular Ca2+. These results suggest that both ETA- and ETB-receptor activation contribute to ET-1-induced sustained increase of [Ca]c and [Ca]n in hVSMCs. Moreover, in contrast to the peptidic antagonists of ET-1 receptors, the nonpeptidic ETA-receptor antagonist BMS-182874 and the nonpeptidic ETB-receptor antagonist A-192621 were able to reverse the effect of ET-1. Nonpeptidic ETA- and ETB-receptor antagonists may therefore be better pharmacological tools for blocking ET-1-induced sustained increase of intracellular Ca2+ in hVSMCs. Our results also suggest that the ET-1-induced sustained increase of [Ca]c and [Ca]n is not mediated via activation of PKC, but via a PTX- and CTX-sensitive G protein calcium influx through the R-type Ca2+ channel.


Assuntos
Núcleo Celular/metabolismo , Citosol/metabolismo , Endotelina-1/antagonistas & inibidores , Endotelina-1/farmacologia , Miócitos de Músculo Liso/metabolismo , Receptor de Endotelina A/efeitos dos fármacos , Receptor de Endotelina B/efeitos dos fármacos , Adolescente , Adulto , Núcleo Celular/efeitos dos fármacos , Separação Celular , Quelantes/farmacologia , Citosol/efeitos dos fármacos , Antagonistas do Receptor de Endotelina A , Antagonistas do Receptor de Endotelina B , Ativadores de Enzimas/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Técnicas In Vitro , Microscopia Confocal , Pessoa de Meia-Idade , Miócitos de Músculo Liso/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Receptor de Endotelina A/agonistas , Receptor de Endotelina B/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA