Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 13(5): e0195187, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29718918

RESUMO

The application of meta-heuristic algorithms for t-way testing has recently become prevalent. Consequently, many useful meta-heuristic algorithms have been developed on the basis of the implementation of t-way strategies (where t indicates the interaction strength). Mixed results have been reported in the literature to highlight the fact that no single strategy appears to be superior compared with other configurations. The hybridization of two or more algorithms can enhance the overall search capabilities, that is, by compensating the limitation of one algorithm with the strength of others. Thus, hybrid variants of the flower pollination algorithm (FPA) are proposed in the current work. Four hybrid variants of FPA are considered by combining FPA with other algorithmic components. The experimental results demonstrate that FPA hybrids overcome the problems of slow convergence in the original FPA and offers statistically superior performance compared with existing t-way strategies in terms of test suite size.


Assuntos
Algoritmos , Flores/fisiologia , Modelos Biológicos , Polinização
2.
PLoS One ; 13(5): e0195675, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29771918

RESUMO

The sine-cosine algorithm (SCA) is a new population-based meta-heuristic algorithm. In addition to exploiting sine and cosine functions to perform local and global searches (hence the name sine-cosine), the SCA introduces several random and adaptive parameters to facilitate the search process. Although it shows promising results, the search process of the SCA is vulnerable to local minima/maxima due to the adoption of a fixed switch probability and the bounded magnitude of the sine and cosine functions (from -1 to 1). In this paper, we propose a new hybrid Q-learning sine-cosine- based strategy, called the Q-learning sine-cosine algorithm (QLSCA). Within the QLSCA, we eliminate the switching probability. Instead, we rely on the Q-learning algorithm (based on the penalty and reward mechanism) to dynamically identify the best operation during runtime. Additionally, we integrate two new operations (Lévy flight motion and crossover) into the QLSCA to facilitate jumping out of local minima/maxima and enhance the solution diversity. To assess its performance, we adopt the QLSCA for the combinatorial test suite minimization problem. Experimental results reveal that the QLSCA is statistically superior with regard to test suite size reduction compared to recent state-of-the-art strategies, including the original SCA, the particle swarm test generator (PSTG), adaptive particle swarm optimization (APSO) and the cuckoo search strategy (CS) at the 95% confidence level. However, concerning the comparison with discrete particle swarm optimization (DPSO), there is no significant difference in performance at the 95% confidence level. On a positive note, the QLSCA statistically outperforms the DPSO in certain configurations at the 90% confidence level.


Assuntos
Algoritmos , Heurística , Simulação por Computador
3.
PLoS One ; 11(11): e0166150, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27829025

RESUMO

Combinatorial test design is a plan of test that aims to reduce the amount of test cases systematically by choosing a subset of the test cases based on the combination of input variables. The subset covers all possible combinations of a given strength and hence tries to match the effectiveness of the exhaustive set. This mechanism of reduction has been used successfully in software testing research with t-way testing (where t indicates the interaction strength of combinations). Potentially, other systems may exhibit many similarities with this approach. Hence, it could form an emerging application in different areas of research due to its usefulness. To this end, more recently it has been applied in a few research areas successfully. In this paper, we explore the applicability of combinatorial test design technique for Fractional Order (FO), Proportional-Integral-Derivative (PID) parameter design controller, named as FOPID, for an automatic voltage regulator (AVR) system. Throughout the paper, we justify this new application theoretically and practically through simulations. In addition, we report on first experiments indicating its practical use in this field. We design different algorithms and adapted other strategies to cover all the combinations with an optimum and effective test set. Our findings indicate that combinatorial test design can find the combinations that lead to optimum design. Besides this, we also found that by increasing the strength of combination, we can approach to the optimum design in a way that with only 4-way combinatorial set, we can get the effectiveness of an exhaustive test set. This significantly reduced the number of tests needed and thus leads to an approach that optimizes design of parameters quickly.

4.
J Adv Res ; 7(1): 125-34, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26843978

RESUMO

In PID controller design, an optimization algorithm is commonly employed to search for the optimal controller parameters. The optimization algorithm is based on a specific performance criterion which is defined by an objective or cost function. To this end, different objective functions have been proposed in the literature to optimize the response of the controlled system. These functions include numerous weighted time and frequency domain variables. However, for an optimum desired response it is difficult to select the appropriate objective function or identify the best weight values required to optimize the PID controller design. This paper presents a new time domain performance criterion based on the multiobjective Pareto front solutions. The proposed objective function is tested in the PID controller design for an automatic voltage regulator system (AVR) application using particle swarm optimization algorithm. Simulation results show that the proposed performance criterion can highly improve the PID tuning optimization in comparison with traditional objective functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA