Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Immunopathol Pharmacol ; 38: 3946320241272642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39096175

RESUMO

Prolonged exposure to different occupational or environmental toxicants triggered oxidative stress and inflammatory reactions mediated lung damage. This study was designed to explore the influence and protective impact of flavone on lung injury in rats intoxicated with nicotine (NIC) and exposed to radiation (IR). Forty rats were divided into four groups; group I control, group II flavone; rats were administered with flavone (25 mg/kg/day), group III NIC + IR; rats were injected intraperitoneally with NIC (1 mg/kg/day) and exposed to γ-IR (3.5 Gy once/week for 2 weeks) while group IV NIC + IR + flavone; rats were injected with NIC, exposed to IR and administered with flavone. Redox status parameters and histopathological changes in lung tissue were evaluated. Nuclear factor-kappa B (NF-κB), forkhead box O-class1 (FoxO1) and nucleotide-binding domain- (NOD-) like receptor pyrin domain-containing-3 (NLRP3) gene expression were measured in lung tissues. Moreover, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and phosphatidylinositol three kinase (PI3K) were measured using ELISA kits. Our data demonstrates, for the first time, that flavone protects the lung from NIC/IR-associated cytotoxicity, by attenuating the disrupted redox status and aggravating the antioxidant defence mechanism via activation of the PI3K/Nrf2. Moreover, flavone alleviates pulmonary inflammation by inhibiting the inflammatory signaling pathway FOXO1/NF-κB/NLRP3- Inflammasome. Collectively, the obtained results exhibited a notable efficiency of flavone in alleviating lung injury induced by NIC and IR via modulating PI3K/Nrf2 and FoxO1/NLRP3 Inflammasome.


Assuntos
Flavonas , Inflamassomos , Lesão Pulmonar , Nicotina , Animais , Masculino , Ratos , Flavonas/farmacologia , Proteína Forkhead Box O1 , Raios gama , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos da radiação , Lesão Pulmonar/metabolismo , Lesão Pulmonar/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Nicotina/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
2.
Plant Physiol Biochem ; 213: 108791, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38861818

RESUMO

Despite the tangible benefits of copper nanoparticles (CuNPs) for plants, the increasing use of CuNPs poses a threat to plants and the environment. Although miRNAs have been shown to mediate heat shock and CuNPs by altering gene expression, no study has investigated how CuNPs in combination with heat shock (HS) affect the miRNA expression profile. Here, we exposed tomato plants to 0.01 CuONPs at 42 °C for 1 h after exposure. It was found that the expression levels of miR156a, miR159a and miR172a and their targets SPL3, MYB33 and AP2a were altered under CuNPs and HS + CuNPs. This alteration accelerated the change of vegetative phase and the process of leaf senescence. The overexpression of miR393 under CuNPs and HS + CuNPs could also be an indicator of the attenuation of leaf morphology. Interestingly, the down-regulation of Cu/ZnSOD1 and Cu/ZnSOD2 as target genes of miR398a, which showed strong abnormal expression, was replaced by FeSOD (FSD1), indicating the influence of CuNPs. In addition, CuNPs triggered the expression of some important genes of heat shock response, including HsFA2, HSP70-9 and HSP90-3, which showed lower expression compared to HS. Thus, CuNPs play an important role in altering the gene expression pathway during heat stress.


Assuntos
Cobre , Resposta ao Choque Térmico , Nanopartículas Metálicas , MicroRNAs , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Cobre/metabolismo , Resposta ao Choque Térmico/genética , Nanopartículas Metálicas/química , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , RNA de Plantas/genética , RNA de Plantas/metabolismo
3.
Inflammopharmacology ; 32(4): 2629-2645, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38662181

RESUMO

The development of nanoparticles (NPs) with active components with upgraded stability, and prolonged release helps in enhanced tissue regeneration. In addition, NPs are feasible strategy to boost antibiotic effectiveness and reduce drug side effects. Our study focuses on the use of amikacin (AMK) and gamma amino butyric acid (GABA) unloaded combinations or loaded on chitosan nanoparticles (CSNPs) for kidney protection. The AMK-GABA-CSNPs were prepared with the ionic gelation method, the morphology was studied using transmission electron microscopy (TEM), zetasizer and the Fourier transform-infrared spectroscopy (FT-IR) spectrum of the synthesized NPs was observed. The average size of AMK-GABA-CSNPs was 77.5 ± 16.5 nm. Zeta potential was + 38.94 ± 2.65 mV. AMK-GABA-CSNPs revealed significant in vitro antioxidant, anti-coagulation, non-hemolytic properties and good cell compatibility. To compare the effects of the unloaded AMK-GABA combination and AMK-GABA-CSNPs on the renal tissue, 42 healthy Sprague-Dawley rats were divided into seven groups. G1: normal control (NC), normal saline; G2: low-dose nephrotoxic group (LDN), AMK (20 mg/kg/day; i.p.); G3: unloaded AMK (20 mg/kg/day; i.p.) and GABA (50 mg/kg/day; i.p.); G4: AMK-GABA-CSNPs (20 mg/kg/day; i.p.); G5: high-dose nephrotoxic group (HDN), AMK (30 mg/kg/day; i.p.); G6: unloaded AMK (30 mg/kg/day; i.p.) and GABA (50 mg/kg/day; i.p.) and G7: AMK-GABA-CSNPs (30 mg/kg/day; i.p.). The results showed that AMK-GABA-CSNPs formulation is superior to unloaded AMK-GABA combination as it ameliorated kidney functions, oxidative stress and displayed a significant homeostatic role via suppression of inflammatory cytokines of Th1, Th2 and Th17 types. Hence, AMK-GABA-CSNPs could afford a potential nano-based therapeutic formula for the management of AMK-nephrotoxicity.


Assuntos
Amicacina , Quitosana , Rim , Nanopartículas , Ratos Sprague-Dawley , Ácido gama-Aminobutírico , Animais , Quitosana/química , Quitosana/farmacologia , Nanopartículas/administração & dosagem , Nanopartículas/química , Ratos , Amicacina/farmacologia , Amicacina/administração & dosagem , Masculino , Rim/efeitos dos fármacos , Rim/metabolismo , Ácido gama-Aminobutírico/farmacologia , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Portadores de Fármacos/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula
4.
BMC Complement Med Ther ; 24(1): 71, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303002

RESUMO

BACKGROUND: Melissa officinalis (MO) is a well-known medicinal plant species used in the treatment of several diseases; it is widely used as a vegetable, adding flavour to dishes. This study was designed to evaluate the therapeutic effect of MO Extract against hyperthyroidism induced by Eltroxin and γ-radiation. METHODS: Hyperthyroidism was induced by injecting rats with Eltroxin (100 µg/kg/ day) for 14 days and exposure to γ-radiation (IR) (5 Gy single dose). The hyperthyroid rats were orally treated with MO extract (75 mg/kg/day) at the beginning of the second week of the Eltroxin injection and continued for another week. The levels of thyroid hormones, liver enzymes and proteins besides the impaired hepatic redox status and antioxidant parameters were measured using commercial kits. The hepatic gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein-1(Keap-1) in addition to hepatic inflammatory mediators including tumor necrosis factor-α (TNF- α), Monocyte chemoattractant protein-1 (MCP-1) and fibrogenic markers such as transforming growth factor-beta1 (TGF-ß1) were determined. RESULTS: MO Extract reversed the effect of Eltroxin + IR on rats and attenuated the thyroid hormones. Moreover, it alleviated hyperthyroidism-induced hepatic damage by inhibiting the hepatic enzymes' activities as well as enhancing the production of proteins concomitant with improving cellular redox homeostasis by attenuating the deranged redox balance and modulating the Nrf2/Keap-1 pathway. Additionally, MO Extract alleviated the inflammatory response by suppressing the TNF- α and MCP-1 and prevented hepatic fibrosis via Nrf2-mediated inhibition of the TGF-ß1/Smad pathway. CONCLUSION: Accordingly, these results might strengthen the hepatoprotective effect of MO Extract in a rat model of hyperthyroidism by regulating the Nrf-2/ Keap-1 pathway.


Assuntos
Hipertireoidismo , Hepatopatias , Melissa , Extratos Vegetais , Animais , Ratos , Expressão Gênica , Hipertireoidismo/complicações , Hipertireoidismo/tratamento farmacológico , Inflamação/metabolismo , Fígado , Melissa/química , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Hormônios Tireóideos/metabolismo , Tiroxina/genética , Tiroxina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Hepatopatias/etiologia , Hepatopatias/terapia
5.
Int J Immunopathol Pharmacol ; 38: 3946320241227099, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38207276

RESUMO

INTRODUCTION: The clinical use of 5-fluorouracil (5-FU), a routinely used chemotherapy medication, has a deleterious impact on the liver. Therefore, it is necessary to find a less harmful alternative to minimize liver damage. This study was designed to see how 5-fluorouracil nanogel influenced 5-FU-induced liver damage in rats. METHODS: To induce liver damage, male albino rats were injected intraperitoneally with 5-FU (12.5 mg/kg) three doses/week for 1 month. The histopathological examination together with measuring the activities of serum alanine and aspartate aminotransferase enzymes (ALT and AST) were used to evaluate the severity of liver damage besides, hepatic oxidative stress and antioxidant markers were also measured. The hepatic gene expression of heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein-1(Keap-1) in addition to hepatic inflammatory mediators including tumor necrosis factor-α (TNF- α) and interleukins (IL-1ß, IL-6) were detected. RESULTS: 5-Fu nanogel effectively attenuated 5-FU-induced liver injury by improving the hepatic structure and function (ALT and AST) besides the suppression of the hepatic inflammatory mediators (TNF- α, IL-1ß and IL-6). Additionally, 5-FU nanogel alleviated the impaired redox status and restored the antioxidant system via maintaining the cellular homeostasis Keap-1/Nrf2/HO-1 pathway. CONCLUSION: Consequently, 5-Fu nanogel exhibited lower liver toxicity compared to 5-FU, likely due to the alleviation of hepatic inflammation and the regulation of the cellular redox pathway.


Assuntos
Antioxidantes , Doença Hepática Induzida por Substâncias e Drogas , Polietilenoglicóis , Polietilenoimina , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Fluoruracila/toxicidade , Fator 2 Relacionado a NF-E2 , Interleucina-6/metabolismo , Nanogéis , Fígado , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Mediadores da Inflamação/metabolismo
6.
J Nanobiotechnology ; 21(1): 373, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37828599

RESUMO

BACKGROUND: Usually, wounds recover in four to six weeks. Wounds that take longer time than this to heal are referred to as chronic wounds. Impaired healing can be caused by several circumstances like hypoxia, microbial colonization, deficiency of blood flow, reperfusion damage, abnormal cellular reaction and deficiencies in collagen production. Treatment of wounds can be enhanced through systemic injection of the antibacterial drugs and/or other topical applications of medications. However, there are a number of disadvantages to these techniques, including the limited or insufficient medication penetration into the underlying skin tissue and the development of bacterial resistance with repeated antibiotic treatment. One of the more recent treatment options may involve using nanotherapeutics in combination with naturally occurring biological components, such as snail extracts (SE). In this investigation, chitosan nanoparticles (CS NPs) were loaded with an Eobania vermiculata whole-body muscle extract. The safety of the synthesized NPs was investigated in vitro to determine if these NPs might be utilized to treat full-skin induced wounds in vivo. RESULTS: SEM and TEM images showed uniformly distributed, spherical, smooth prepared CS NPs and snail extract-loaded chitosan nanoparticles (SE-CS NPs) with size ranges of 76-81 and 91-95 nm, respectively. The zeta potential of the synthesized SE-CS NPs was - 24.5 mV, while that of the CS NPs was 25 mV. SE-CS NPs showed a remarkable, in vitro, antioxidant, anti-inflammatory and antimicrobial activities. Successfully, SE-CS NPs (50 mg/kg) reduced the oxidative stress marker (malondialdehyde), reduced inflammation, increased the levels of the antioxidant enzymes (superoxide dismutase and glutathione), and assisted the healing of induced wounds. SE-CS NPs (50 mg/kg) can be recommended to treat induced wounds safely. SE was composed of a collection of several wound healing bioactive components [fatty acids, amino acids, minerals and vitamins) that were loaded on CS NPs. CONCLUSIONS: The nanostructure enabled bioactive SE components to pass through cell membranes and exhibit their antioxidant and anti-inflammatory actions, accelerating the healing process of wounds. Finally, it is advised to treat rats' wounds with SE-CS NPs.


Assuntos
Quitosana , Nanopartículas , Ratos , Animais , Quitosana/química , Antioxidantes/farmacologia , Antioxidantes/química , Citocinas , Nanopartículas/química , Cicatrização , Anti-Inflamatórios/farmacologia , Músculos , Antibacterianos/farmacologia , Antibacterianos/química
7.
Phytother Res ; 37(12): 5464-5472, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37675925

RESUMO

Hypertension is a serious concern as it is one of the causes of kideny failure and pulmonary fibrosis. An important therapeutic strategy for treating chronic hypertension is to inhibit the angiotensin converting enzyme (ACE). ACE inhibition reduces kidney damage, pulmonary artery pressure, and high blood pressure. Due to their high efficacy and low risk of side effects, natural renin-angiotensin system inhibitors have drawn increasing attention over the past decades. Alkaloids, amino acids, anthocyanidins, flavonoids, glucosinolates, isoflavonoids, phenolic acids, polyphenolics, and triterpenoids are among the bioactive metabolites pocessing an impressive ACE inhibitory activity. Many herbs including Rosmarinus officinalis, Hibiscus sabdariffa, Curcuma longa, Rauwolfia serpentina, Emblica officinalis, Cynara scolymus, Punica granatum, Mucuna pruriens, Capsicum annuum, and Moringa olifera were found having ACE inhibitory activities comparable to captopril and enalpril. These enticing natural ACE inhibitors deserve to be a safeguard medicine against hypertension, respiratory distress syndrome, and chronic kidney diseases. More clinical trials are required before new natural compounds and herbs can be used to treat chronic hypertension and its ramifications, such as respiratory distress syndrome and kidney failure.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Síndrome do Desconforto Respiratório , Humanos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Sistema Renina-Angiotensina , Hipertensão/tratamento farmacológico , Insuficiência Renal Crônica/tratamento farmacológico , Síndrome do Desconforto Respiratório/tratamento farmacológico
8.
Discov Oncol ; 14(1): 138, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37493814

RESUMO

The use of 5-fluorouracil (5-FU) is associated with multifaceted challenges and poor pharmacokinetics. Accordingly, our study was designed to prepare 5-FU nanogel as a new form of the colon cancer chemotherapeutic drug 5-FU using polyacrylic acid and gelatin hybrid nanogel as efficient drug carriers. Alongside the in vivo chemotherapeutic evaluation, the anti-proliferative and anti-apoptotic efficacy were carried out for 5-FU nanogel against 1,2-dimethylhydrazine (DMH, 20 mg/kg) and γ-radiation (4 Gy)-prompted colon dysplasia in rats compared to 5-FU. The morphology and size of 5-FU nanogel were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS) in addition to cytotoxicity assay. The expression of phosphoinositide-3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR); Toll-like receptor2 (TLR2)/nuclear factor kappa B), adenosine monophosphate (AMP)-activated protein kinase (AMPK) and its downstream autophagy-related genes in addition to apoptotic markers were measured in colon tissues. Results: 5-FU nanogel reduced the levels of the TLR2/ NF-κß as well as the expression of PI3K/AKT/mTOR. Moreover, it promoted autophagy through the activation of the AMPK and its downstream targets which consequently augmented the intrinsic and extrinsic apoptotic pathways. Conclusion: Collectively, these data might strengthen the therapeutic potential of 5-FU nanogel which can be used as an antitumor product for colon cancer.

9.
Cell Stress Chaperones ; 28(6): 709-720, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37368180

RESUMO

The purpose of this study was to demonstrate the neuroprotective effect of Melissa officinalis extract (MEE) against brain damage associated with hypothyroidism induced by propylthiouracil (PTU) and/or γ-radiation (IR) in rats. Hypothyroidism induction and/or exposure to IR resulted in a significant decrease in the serum levels of T3 and T4 associated with increased levels of lipid peroxidation end product, malondialdehyde (MDA), and nitrites (NO) in the brain tissue homogenate. Also, hypothyroidism and /or exposure to IR markedly enhance the endoplasmic reticulum stress by upregulating the gene expressions of the protein kinase RNA-like endoplasmic reticulum kinase (PERK), activated transcription factor 6 (ATF6), endoplasmic reticulum-associated degradation (ERAD), and CCAAT/enhancer-binding protein homologous protein (CHOP) in the brain tissue homogenate associated with a proapoptotic state which indicated by the overexpression of Bax, BCl2, and caspase-12 that culminates in brain damage. Meanwhile, the PTU and /or IR-exposed rats treated with MEE reduced oxidative stress and ERAD through ATF6. Also, the MEE treatment prevented the Bax and caspase-12 gene expression from increasing. This treatment in hypothyroid animals was associated with neuronal protection as indicated by the downregulation in the gene expressions of the microtubule-associated protein tau (MAPT) and amyloid precursor protein (APP) in the brain tissue. Furthermore, the administration of MEE ameliorates the histological structure of brain tissue. In conclusion, MEE might prevent hypothyroidism-induced brain damage associated with oxidative stress and endoplasmic reticulum stress.


Assuntos
Hipotireoidismo , Melissa , Ratos , Animais , Melissa/metabolismo , Degradação Associada com o Retículo Endoplasmático , Proteína X Associada a bcl-2/metabolismo , Caspase 12/metabolismo , Encéfalo/metabolismo , Apoptose , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia , Estresse do Retículo Endoplasmático
10.
BMC Med Educ ; 23(1): 426, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291568

RESUMO

BACKGROUND: Ward rounds are a cornerstone in the educational experience of junior doctors and an essential part of teaching patient care. Here, we aimed to assess the doctors' perception of ward rounds as an educational opportunity and to identify the obstacles faced in conducting a proper ward round in Sudanese hospitals. METHOD: A cross-sectional study was conducted from the 15th to the 30th of January 2022 among house officers, medical officers, and registrars in about 50 teaching and referral hospitals in Sudan. House officers and medical officers were considered the learners, while specialist registrars were considered the teachers. Doctors' perceptions were assessed using an online questionnaire, with a 5-level Likert scale to answer questions. RESULTS: A total of 2,011 doctors participated in this study (882 house officers, 697 medical officers, and 432 registrars). The participants were aged 26.9 ± 3.2 years, and females constituted about 60% of the sample. An average of 3.1 ± 6.8 ward rounds were conducted per week in our hospitals, with 11.1 ± 20.3 h spent on ward rounds per week. Most doctors agreed that ward rounds are suitable for teaching patient management (91.3%) and diagnostic investigations (89.1%). Almost all the doctors agreed that being interested in teaching (95.1%) and communicating appropriately with the patients (94.7%) make a good teacher in ward rounds. Furthermore, nearly all the doctors agreed that being interested in learning (94.3%) and communicating appropriately with the teacher (94.5%) make a good student on ward rounds. About 92.8% of the doctors stated that the quality of ward rounds could be improved. The most frequently reported obstacles faced during ward rounds were the noise (70%) and lack of privacy (77%) in the ward environment. CONCLUSION: Ward rounds have a special value in teaching patient diagnosis and management. Being interested in teaching/learning and having good communication skills were the two major criteria that make a good teacher/learner. Unfortunately, ward rounds are faced with obstacles related to the ward environment. It is mandatory to ensure the quality of both ward rounds' teaching and environment to optimize the educational value and subsequently improve patient care practice.


Assuntos
Aprendizagem , Visitas de Preceptoria , Feminino , Humanos , Estudos Transversais , Pessoal de Saúde , Hospitais
11.
Medicina (Kaunas) ; 59(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36984592

RESUMO

Introduction: The purpose of this study is to investigate and compare the effects of the antimicrobial agents Moringa oleifera and bioactive glass nanoparticles activated by femtosecond laser light on the biomimetic dentin remineralization using teeth having carious dentin ICDAS code 3. Methods and Materials: A total of 27 dentin surface samples were divided into three groups: the first group was treated with a Moringa oleifera extract, while the second group was treated with bioactive glass nanoparticles, and as for the control group, the third group received no additional agent. All groups were subjected to femtosecond laser light at three different wavelengths: 390 nm, 445 nm, and 780 nm. The photoactivation of each sample was achieved using the femtosecond laser light for 5 min with an average power rating of 300 mW, a pulse duration of 100 fs, and a pulse repetition rate of 80 Hz. The mineral content of the samples was obtained and analyzed using the laser-induced breakdown spectroscopy (LIBS). The LIBS analysis was conducted with the following laser light parameters: average power of ~215 mW, wavelength of 532 nm, pulse duration of 10 ns, and a pulse repetition rate of 10 Hz. Results: Most studied samples exhibited a relative increase in the mineral content that may enhance biomimetic remineralization. Moringa oleifera photoactivated by femtosecond laser light at 445 nm achieved a significant increase in mineral content. Conclusion: Using the femtosecond laser light to activate the relatively cheap and commercially available antimicrobial agent Moringa oleifera supports the strategy of minimal invasive approaches for the treatment and biomimetic remineralization of carious dentin ICDAS code 3.


Assuntos
Cárie Dentária , Dentina , Humanos , Biomimética , Lasers , Análise Espectral , Minerais , Cárie Dentária/terapia
12.
Biomedicines ; 11(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36830949

RESUMO

The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multidrug resistant (MDR) microorganisms. This problem is exacerbated when microorganisms create biofilms, which can boost bacterial resistance by up to 1000-fold and increase the emergence of MDR infections. The absence of novel and potent antimicrobial compounds is linked to the rise of multidrug resistance. This has sparked international efforts to develop new and improved antimicrobial agents as well as innovative and efficient techniques for antibiotic administration and targeting. There is an evolution in nanotechnology in recent years in treatment and prevention of the biofilm formation and MDR infection. The development of nanomaterial-based therapeutics, which could overcome current pathways linked to acquired drug resistance, is a hopeful strategy for treating difficult-to-treat bacterial infections. Additionally, nanoparticles' distinct size and physical characteristics enable them to target biofilms and treat resistant pathogens. This review highlights the current advances in nanotechnology to combat MDR and biofilm infection. In addition, it provides insight on development and mechanisms of antibiotic resistance, spread of MDR and XDR infection, and development of nanoparticles and mechanisms of their antibacterial activity. Moreover, this review considers the difference between free antibiotics and nanoantibiotics, and the synergistic effect of nanoantibiotics to combat planktonic bacteria, intracellular bacteria and biofilm. Finally, we will discuss the strength and limitations of the application of nanotechnology against bacterial infection and future perspectives.

13.
Food Chem Toxicol ; 172: 113602, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610474

RESUMO

The endoplasmic reticulum (ER) controls many biological functions besides maintaining the function of liver cells. Various studies reported the role of the ER stress and UPR signaling pathway in various liver diseases via triggering hepatocytes apoptosis. This study aims to investigate the suppressive effect of ß-sitosterol (ßS) on apoptosis associated with liver injury and ER stress. METHODS: Liver damage in rats was induced by TAA (150 mg/kg I.P twice a week/3 weeks) and γ-irradiation (single dose 3.5 Gy) and treated with ßS (20 mg/kg daily for 30 days). Serum aminotransferase activity, lipid profile and lipid metabolic factors were measured beside liver oxidative stress and inflammatory markers. Moreover, the hepatic expression of ER stress markers (inositol-requiring enzyme 1 alpha (IRE1α), X-box-binding protein 1 (XBP1) and CCAAT/enhancer binding protein homologous protein (CHOP) and apoptotic markers were detected together with histopathological examination. RESULTS: ßS diminished the aminotransferase activity, the oxidative stress markers as well as the inflammatory mediators. Furthermore, ßS lowered the circulating TG and TC and the hepatic lipotoxicity via the suppression of lipogenesis (Srebp-1c) and improved the ß-oxidation (Pparα and Cpt1a) together with the mitochondrial biogenesis (Pgc-1 α). Moreover, the upregulated levels of ER stress markers were reduced upon treatment with ßS, which consequently attenuated hepatic apoptosis. CONCLUSION: ßS relieves hepatic injury, ameliorates mitochondrial biogenesis, and reduces lipotoxicity and apoptosis via inhibition of CHOP and ER stress response.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Estresse do Retículo Endoplasmático , Endorribonucleases , Hepatócitos , Sitosteroides , Animais , Ratos , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Hepatócitos/efeitos dos fármacos , Fígado/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Sitosteroides/farmacologia , Tioacetamida/metabolismo , Tioacetamida/farmacologia , Transaminases/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
14.
Biol Trace Elem Res ; 201(1): 338-352, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35138531

RESUMO

Breast cancer is one of the most prevalent and deadliest cancers among women in the world because of its aggressive behavior and inadequate response to conventional therapies. Mesenchymal stem cells (MSCs) combined with green nanomaterials could be an efficient tool in cell cancer therapy. This study examined the curative effects of bone marrow-derived mesenchymal stem cells (BM-MSCs) with selenium nanoparticles (SeNPs) coated with fermented soymilk and a low dose of gamma radiation (LDR) in DMBA-induced mammary gland carcinoma in female rats. DMBA-induced mammary gland carcinoma as marked by an elevation of mRNA level of cancer promoter genes (Serpin and MIF, LOX-1, and COL1A1) and serum level of VEGF, TNF-α, TGF-ß, CA15-3, and caspase-3 with the reduction in mRNA level of suppressor gene (FST and ADRP). These deleterious effects were hampered after treatment with BM-MSCs (1 × 106 cells/rat) once and daily administration of SeNPs (20 mg/kg body weight) and exposure once to (0.25 Gy) LDR. Finally, MSCs, SeNPs, and LDR notably modulated the expression of multiple tumor promoters and suppressor genes playing a role in breast cancer induction and suppression.


Assuntos
Carcinoma , Células-Tronco Mesenquimais , Nanopartículas , Selênio , Ratos , Feminino , Animais , Selênio/farmacologia , Selênio/metabolismo , Microambiente Tumoral , Raios gama , Carcinogênese/metabolismo , Carcinogênese/patologia , Transformação Celular Neoplásica/metabolismo , Carcinoma/metabolismo , Carcinoma/patologia
15.
Cureus ; 15(12): e51419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38299137

RESUMO

Introduction Protein-energy wasting is a prevalent condition in patients with chronic kidney disease. Our goal was to validate the risk assessment tool (Hashmi's tool) in multiple centers, developed in 2018, as it was easily applicable and cost-effective. Methods The following variables were scored as 0, 1, 2, or 3 as per severity: body mass index, HD vintage in years, functional capacity, serum albumin, serum ferritin, and the number of co-morbid conditions (diabetes mellitus, hypertension, ischemic heart disease, and cerebrovascular disease). This scoring system was applied to maintenance hemodialysis patients in six different centers. The patient's record was evaluated for two years. Patients were divided into low-risk (score <6) and high-risk (score ≥6). We compared the two groups using the chi-square test for the difference in hospitalization and mortality. Results A total of 868 patients' records were analyzed, and the maximum score was 13 with the application of Hashmi's tool. Four hundred twenty-nine patients were in the low-risk group, and 439 patients fell into the high-risk group. Four hundred sixty-seven patients were male, and 401 were females; 84% had hypertension, and 54% had diabetes mellitus. In the high-risk group, we identified more females. Patients' likelihood of being in the high-risk group was higher if they had diabetes mellitus, hypertension, or ischemic heart disease. Hospitalization due to vascular or non-vascular etiologies was more common in the high-risk group (p=0.036 and p<0.001, respectively). A total of 123 patients died during the study period, 92 from the high-risk group as compared to 31 from the low-risk group. This was three times higher and statistically significant (p<0.001). Conclusion Using a simple and cost-effective tool, we have identified malnourished patients who are at risk of hospitalization and mortality. This study has validated the previous work at a single center, which has now been reflected in six dialysis units across Saudi Arabia.

16.
Int J Immunopathol Pharmacol ; 36: 3946320221137435, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36319192

RESUMO

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) is a worldwide health problem with high prevalence and morbidity associated with obesity, insulin resistance, type 2 diabetes mellitus (T2DM), and dyslipidemia. Nano-formulation of luteolin with Zn oxide in the form of Lut/ZnO NPs may improve the anti-diabetic property of each alone and ameliorate the insulin resistance thus management of NAFLD. This study aimed to measure the efficiency of Lut/ZnO NPs against insulin resistance coupled with NAFLD and T2DM. METHODS: A diabetic rat model with NAFLD was induced by a high-fat diet and streptozotocin (30 mg/kg I.P). Serum diabetogenic markers levels, lipid profile, and activity of liver enzymes were measured beside liver oxidative stress markers. Moreover, the hepatic expressions of PI3K/AKT/FoxO1/SERBP1c as well as heme oxygenase-1 were measured beside the histopathological examination. RESULTS: Lut/ZnO NPs treatment effectively reduced hyperglycemia, hyperinsulinemia, and ameliorated insulin resistance. Additionally, Lut/ZnO NPs improved the hepatic functions, the antioxidant system, and reduced the oxidative stress markers. Furthermore, the lipid load in the liver, as well as the circulating TG and TC, was minified via the suppression of lipogenesis and gluconeogenesis. Moreover, Lut/ZnO NPs activated the PI3K/AKT signaling pathway, hence inactivating FoxO1, therefore enhancing the hepatic cells' insulin sensitivity. CONCLUSION: Lut/ZnO NPs have a hepatoprotective effect and may relieve the progression of NAFLD by alleviating insulin resistance, ameliorating the antioxidant status, and regulating the insulin signal pathway.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Nanopartículas , Hepatopatia Gordurosa não Alcoólica , Óxido de Zinco , Ratos , Animais , Óxido de Zinco/metabolismo , Óxido de Zinco/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Luteolina , Diabetes Mellitus Tipo 2/metabolismo , Antioxidantes/farmacologia , Diabetes Mellitus Experimental/metabolismo , Insulina/metabolismo , Fígado , Lipídeos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/farmacologia
17.
Nanomaterials (Basel) ; 12(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364531

RESUMO

We studied the antimicrobial effect of gold quantum dots (AuQDs), femtosecond laser irradiation, and the combined effect of laser irradiation and AuQD treatment against common infectious eye pathogens. The INSPIRE HF100 laser system (Spectra Physics) provided a femtosecond laser, which was pumped by a mode-locked femtosecond Ti: sapphire laser MAI TAI HP (Spectra Physics), while a Quanta-Ray nanosecond Nd: YAG laser (Spectra-Physics) was used to precisely synthesize 7.8, 8.7, and 11.6 nm spherical AuQDs. Then, the in vitro growth kinetics and growth rate analysis of E. coli, methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, Listeria monocytogenes, and Candida albicans (treated with the AuQDs, femtosecond laser irradiation, or combined laser and AuQDs treatment) was measured. The biocompatibility of the AuQDs with the retinal epithelial cell lines (ARPE-19) and their toxicity to the cells was assayed. The results showed that (1) in vitro irradiation using a 159 J/cm2 energy density obtained from the 400 nm femtosecond laser suppressed the growth of each of the five pathogens. (2) Similarly, treatment with the AuQDs was antimicrobial against the four bacteria. The AuQDs with an average size of 7.8 nm were more highly antimicrobial and biocompatible and were less cytotoxic than the larger AuQD sizes. (3) The combined femtosecond laser irradiation and AuQD treatment was more highly antimicrobial than each treatment alone. (4) The AuQD treatment did not impair the rate of wound closure in vitro. These findings suggest that combined femtosecond laser irradiation and AuQD treatment is significantly antimicrobial against Candida albicans, Gram-positive L. monocytogenes, S. aureus, and E. faecalis, as well as Gram-negative E. coli. The nontoxicity and biocompatibility of the AuQD particles tested suggest that this form of treatment may be clinically viable.

18.
J Photochem Photobiol B ; 234: 112540, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35973287

RESUMO

The unusual physical, chemical, and biological features of nanoparticles have sparked considerable attention in the ophthalmological applications. This study reports the synthesis and characterization of zinc oxide nanoparticles (ZnONPs) using laser-ablation at 100 mJ with different ablation times. The synthesized ZnONPs were spherical with an average size of 10.2 nm or 9.8 nm for laser ablation times of 20 and 30 min, respectively. The ZnONPs were screened for their antimicrobial activity against ophthalmological bacteria, methicillin-resistant S. aureus (MRSA) and Pseudomonas aeruginosa. The significant decrease in bacterial growth was observed after treatment with ZnONPs in combination with 400 nm femtosecond laser irradiation. ZnONPs were investigated for their antioxidant activity and biocompatibility towards retinal epithelial cells (ARPE-19). ZnONPs showed moderate antioxidant and free radical scavenging activity. ZnONPs prepared with an ablation time of 20 min were safer and more biocompatible than those prepared with an ablation time of 30 min, which were toxic to ARPE-19 cells with LC50 (11.3 µg/mL) and LC90 (18.3 µg/mL). In this study, laser ablation technique was used to create ZnONPs, and it was proposed that ZnONPs could have laser-activated antimicrobial activity for ophthalmological applications.


Assuntos
Anti-Infecciosos , Terapia a Laser , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Óxido de Zinco , Anti-Infecciosos/farmacologia , Antioxidantes , Células Epiteliais , Lasers , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Nanopartículas/química , Óxido de Zinco/química
19.
Luminescence ; 37(8): 1376-1386, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35708545

RESUMO

Linen fibres were coated with a glow-in-the-dark photoluminescence, flame-retarding, and hydrophobic smart nanocomposite using the pad-dry-curing process. Ecologically friendly ammonium polyphosphate and lanthanide-activated strontium aluminium oxide (LSAO) nanoparticles were immobilized into linen fabric using eco-friendly room-temperature-vulcanizing silicone rubber. Different analytical techniques were used to examine the morphological characteristics and elemental compositions of LSAO nanoparticles and treated linen textiles. The self-extinguishing properties of the treated linen textiles were tested for their fire resistance. After 24 washing cycles, the coated linen samples retained their flame-retarding properties. The treated linen's superhydrophobicity rose in direct proportion to the LSAO concentration. After being excited at 365 nm, the colourless luminescent film that was coated on linen surface gave out an emission wavelength of 519 nm. The photoluminescent linen was monitored to create a range of different colours, including off-white in daytime light and green under ultraviolet (UV) light radiation, according to the Commission Internationale de l'éclairage laboratory colorimetric coordinates and photoluminescence spectra. Emission, excitation, and lifetime spectral analysis of the treated linen revealed persistent phosphorescence. For mechanical and comfort evaluation, the coated linen textiles' bending length and air permeability were assessed. Good UV light shielding and enhanced antibacterial activity were detected in the treated linens.


Assuntos
Nanopartículas , Têxteis , Óxido de Alumínio , Antibacterianos/química , Roupas de Cama, Mesa e Banho , Luminescência , Nanopartículas/química , Estrôncio
20.
Environ Sci Pollut Res Int ; 29(49): 75086-75100, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35648353

RESUMO

Nattokinase (NK), a protease enzyme produced by Bacillus subtilis, has various biological effects such as lipid-lowering activity, antihypertensive, antiplatelet/anticoagulant, and neuroprotective effects. Exposure to environmental toxicants such as bisphenol A (BPA) or γ-radiation (IR) causes multi-organ toxicity through several mechanisms such as impairment of oxidative status, signaling pathways, and hepatic and neuronal functions as well as disruption of the inflammatory responses. Therefore, this study is designed to evaluate the ameliorative effect of NK against BPA- or IR-induced liver and brain damage in rats. Serum ammonia level and liver function tests were measured in addition to brain oxidative stress markers, amyloid-beta, tau protein, and neuroinflammatory mediators. Moreover, relative quantification of brain nuclear factor-erythroid 2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) genes, as well as apoptotic markers in brain tissue, was carried out in addition to histopathological examination. The results showed that NK improved liver functions, impaired oxidative status, the cholinergic deficits, and minified the misfolded proteins aggregates. Furthermore, NK alleviated the neuroinflammation via modulating NF-κB/Nrf2/HO-1 pathway and glial cell activation in addition to their antiapoptotic effect. Collectively, the current results revealed the protective effect of NK against hepatic and neurotoxicity derived from BPA or IR.


Assuntos
Fator 2 Relacionado a NF-E2 , Fármacos Neuroprotetores , Subtilisinas , Animais , Ratos , Amônia/metabolismo , Compostos Benzidrílicos/toxicidade , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipídeos , Fígado , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Fenóis/toxicidade , Subtilisinas/farmacologia , Proteínas tau/metabolismo , Raios gama/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA