Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Res ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177248

RESUMO

BACKGROUND: Given the sparse data on the renin-angiotensin system (RAS) and its biological effector molecules ACE1 and ACE2 in pediatric COVID-19 cases, we investigated whether the ACE1 insertion/deletion (I/D) polymorphism could be a genetic marker for susceptibility to COVID-19 in Egyptian children and adolescents. METHODS: This was a case-control study included four hundred sixty patients diagnosed with COVID-19, and 460 well-matched healthy control children and adolescents. The I/D polymorphism (rs1799752) in the ACE1 gene was genotyped by polymerase chain reaction (PCR), meanwhile the ACE serum concentrations were assessed by ELISA. RESULTS: The ACE1 D/D genotype and Deletion allele were significantly more represented in patients with COVID-19 compared to the control group (55% vs. 28%; OR = 2.4; [95% CI: 1.46-3.95]; for the DD genotype; P = 0.002) and (68% vs. 52.5%; OR: 1.93; [95% CI: 1.49-2.5] for the D allele; P = 0.032). The presence of ACE1 D/D genotype was an independent risk factor for severe COVID-19 among studied patients (adjusted OR: 2.6; [95% CI: 1.6-9.7]; P < 0.001. CONCLUSIONS: The ACE1 insertion/deletion polymorphism may confer susceptibility to SARS-CoV-2 infection in Egyptian children and adolescents. IMPACT: Recent studies suggested a crucial role of renin-angiotensin system and its biological effector molecules ACE1 and ACE2 in the pathogenesis and progression of COVID-19. To our knowledge, ours is the first study to investigate the association of ACE1 I/D polymorphism and susceptibility to COVID-19 in Caucasian children and adolescents. The presence of the ACE1 D/D genotype or ACE1 Deletion allele may confer susceptibility to SARS-CoV-2 infection and being associated with higher ACE serum levels; may constitute independent risk factors for severe COVID-19. The ACE1 I/D genotyping help design further clinical trials reconsidering RAS-pathway antagonists to achieve more efficient targeted therapies.

2.
RSC Adv ; 13(17): 11577-11590, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37063726

RESUMO

The present study evaluates the in vitro culture growth rate of Populus alba upon using nano metal-based-oxides such as hematite (Fe2O3 NPs), zinc oxide (ZnO NPs), and manganese oxide (Mn2O3 NPs) nanoparticles as analogues of three primary micronutrients such as iron (Fe), zinc (Zn), and manganese (Mn), which exist in soil as micronutrients. Herein, the in vitro culture growth rate was investigated using three different concentrations (i.e., 20, 40, and 60 mg L-1) of as-prepared metal oxide nanoparticles compared to the control. In addition, the as-prepared nanoparticles have been prepared via the co-precipitation method. Furthermore, the physicochemical properties were investigated using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and dynamic light scattering techniques. Overall, a significant difference in the biomass production-related parameters such as fresh weight, shoot length, and root length was observed compared to the control upon the treatment with micronutrient-based nano-metal-oxides (i.e., Mn2O3 > Fe2O3 > ZnO NPs, respectively). In addition, a significant increase in the root number of Populus alba plants upon their treatment with ZnO NPs was observed compared to other prepared nano-metal-oxides and the control. Also, a remarkable increase in the chlorophyll index was monitored upon the treatment with Fe2O3 NPs rather than the other commonly used Mn2O3 and ZnO NPs, respectively. Moreover, RAPD-PCR bioassays were applied, and the actual six primers showed a genetic variation percentage of 34.17%, indicating that Populus alba is highly genetically stable even in highly contaminated soil. As a result, our findings suggest an idea that indicates the ability to enhance the in vitro culture growth rate of Populus alba plants using metal oxide nanoparticles as analogous to essential micronutrients.

3.
Pediatr Res ; 93(5): 1383-1390, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36085364

RESUMO

BACKGROUND: Given the sparse data on vitamin D status in pediatric COVID-19, we investigated whether vitamin D deficiency could be a risk factor for susceptibility to COVID-19 in Egyptian children and adolescents. We also investigated whether vitamin D receptor (VDR) FokI polymorphism could be a genetic marker for COVID-19 susceptibility. METHODS: One hundred and eighty patients diagnosed to have COVID-19 and 200 matched control children and adolescents were recruited. Patients were laboratory confirmed as SARS-CoV-2 positive by real-time RT-PCR. All participants were genotyped for VDR Fok1 polymorphism by RT-PCR. Vitamin D status was defined as sufficient for serum 25(OH) D at least 30 ng/mL, insufficient at 21-29 ng/mL, deficient at <20 ng/mL. RESULTS: Ninety-four patients (52%) had low vitamin D levels with 74 (41%) being deficient and 20 (11%) had vitamin D insufficiency. Vitamin D deficiency was associated with 2.6-fold increased risk for COVID-19 (OR = 2.6; [95% CI 1.96-4.9]; P = 0.002. The FokI FF genotype was significantly more represented in patients compared to control group (OR = 4.05; [95% CI: 1.95-8.55]; P < 0.001). CONCLUSIONS: Vitamin D deficiency and VDR Fok I polymorphism may constitute independent risk factors for susceptibility to COVID-19 in Egyptian children and adolescents. IMPACT: Vitamin D deficiency could be a modifiable risk factor for COVID-19 in children and adolescents because of its immune-modulatory action. To our knowledge, ours is the first such study to investigate the VDR Fok I polymorphism in Caucasian children and adolescents with COVID-19. Vitamin D deficiency and the VDR Fok I polymorphism may constitute independent risk factors for susceptibility to COVID-19 in Egyptian children and adolescents. Clinical trials should be urgently conducted to test for causality and to evaluate the efficacy of vitamin D supplementation for prophylaxis and treatment of COVID-19 taking into account the VDR polymorphisms.


Assuntos
COVID-19 , Receptores de Calcitriol , Deficiência de Vitamina D , Adolescente , Criança , Humanos , COVID-19/genética , Predisposição Genética para Doença , Genótipo , Receptores de Calcitriol/genética , Fatores de Risco , SARS-CoV-2 , Vitamina D , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/genética
4.
Otol Neurotol ; 30(6): 800-5, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19623096

RESUMO

OBJECTIVE: To identify the predictive capabilities of caloric and rotational testing to distinguish peripheral from nonperipheral vestibular causes of vertigo. STUDY DESIGN: Retrospective case review. SETTING: Academic tertiary care vestibular function test center. PATIENTS: Two hundred dizzy patients (132 with and 68 without suspected peripheral vestibular dizziness) evaluated with bithermal binaural caloric and sinusoidal and step-velocity rotary chair (RC) tests. INTERVENTION: Caloric and RC tests. MAIN OUTCOME MEASURES: 1) Receiver operating characteristic (ROC) analysis of individual caloric and rotary parameters for area under the curve (AUC) as indication of predictive value, and 2) logistic regression analysis of parameter combinations for identification of optimal test battery for predicting peripheral vestibular dysfunction RESULTS: Analysis of the individual receiver operating characteristic (ROC) curves for each caloric and RC test parameter for prediction of peripheral vestibulopathy revealed that the best overall predictive parameter was percentage of caloric weakness (CW; AUC-ROC, 0.73; 95% confidence interval, 0.66-0.80). Using 29.5% as the optimal cutoff point for CW, a specificity of 84% and sensitivity of 55% were obtained. Because of the reduced AUC for the RC parameters, no optimal cutoff points were chosen. Using a logistic regression model in predicting patients with peripheral vestibulopathy demonstrated that either comprehensive caloric and RC testing or the combination of caloric and 0.025 Hz, 0.5 Hz, and time-constant rotational testing yielded the highest predictive value (AUC-ROC, 0.79) CONCLUSION: Calculation of CW was the most promising single marker for identifying peripheral from nonperipheral vestibulopathic patients. Individual RC parameters showed limited predictive value to differentiate peripheral from nonperipheral vestibular dysfunction. However, the combination of subtests yielded an AUC-ROC only slightly less than caloric testing. The combination of caloric and RC testing revealed the strongest predictive capabilities for identifying peripheral vestibular injury. Furthermore, the combination of an abbreviated form of RC testing with caloric testing yielded nearly identical results as full caloric and rotational testing.


Assuntos
Testes Calóricos/métodos , Doenças Vestibulares/diagnóstico , Testes de Função Vestibular/métodos , Aceleração , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Testes Calóricos/instrumentação , Diagnóstico Diferencial , Tontura/etiologia , Movimentos Oculares , Feminino , Humanos , Masculino , Doença de Meniere/complicações , Doença de Meniere/diagnóstico , Pessoa de Meia-Idade , Curva ROC , Reprodutibilidade dos Testes , Rotação , Testes de Função Vestibular/instrumentação , Neuronite Vestibular/complicações , Neuronite Vestibular/diagnóstico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA