Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(1): 89-100, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38181447

RESUMO

Unconventional S-adenosyl-L-methionine (SAM) mimics with enhanced hydrophobicity are an adaptable building block to develop cell-potent inhibitors for SAM-dependent methyltransferases as targeted therapeutics. We recently discovered cell-potent bisubstrate inhibitors for nicotinamide N-methyltransferase (NNMT) by using an unconventional SAM mimic. To delve into the selectivity implications of the unconventional SAM mimic, we employed a chemoproteomic approach to assess two potent NNMT inhibitors LL320 (Ki, app = 6.8 nM) and II399 (containing an unconventional SAM mimic, Ki, app = 5.9 nM) within endogenous proteomes. Our work began with the rational design and synthesis of immobilized probes 1 and 2, utilizing LL320 and II399 as parent compounds. Systematic analysis of protein networks associated with these probes revealed a comprehensive landscape. Notably, NNMT emerged as the top-ranking hit, substantiating the high selectivity of both inhibitors. Meanwhile, we identified additional interacting proteins for LL320 (38) and II399 (17), showcasing the intricate selectivity profiles associated with these compounds. Subsequent experiments confirmed LL320's interactions with RNMT, DPH5, and SAHH, while II399 exhibited interactions with SHMT2 and MEPCE. Importantly, incorporating the unconventional SAM mimic in II399 led to improved selectivity compared to LL320. Our findings underscore the importance of selectivity profiling and validate the utilization of the unconventional SAM mimic as a viable strategy to create highly selective and cell-permeable inhibitors for SAM-dependent methyltransferases.


Assuntos
Inibidores Enzimáticos , S-Adenosilmetionina , Inibidores Enzimáticos/química , S-Adenosilmetionina/metabolismo , Nicotinamida N-Metiltransferase/metabolismo , Metiltransferases
2.
Arch Physiol Biochem ; : 1-14, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37994431

RESUMO

Omentin (intelectin) was first detected in the visceral omental adipose tissue. It has mainly two isoforms, omentin-1 and -2, with isoform-1 being the main form in human blood. It possesses insulin-sensitizing, anti-inflammatory, anti-atherogenic, cardio-protective, and oxidative stress-decreasing effects. Omentin's cardiovascular protective actions are caused by the improved endothelial cell survival and function, increased endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) bioavailability, enhanced vascular smooth muscle cells (VSMCs) relaxation with reduced proliferation, decreased inflammation, and suppressed oxidative stress. Omentin may also have a potential role in different cancer types and rheumatic diseases. Thus, omentin is an excellent therapeutic target in many diseases, including diabetes mellitus (DM), metabolic syndrome (MetS), cardiovascular diseases (CVDs), inflammatory diseases, and cancer. This review demonstrates the physiological functions of omentin in ameliorating insulin resistance (IR), vascular function, and inflammation and its possible share in managing obesity-linked diseases, such as metabolic disorders, DM, and cardiovascular conditions.

3.
BMC Genomics ; 24(1): 667, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932698

RESUMO

BACKGROUND: The gut microbiota is considered a rich source for potential novel probiotics. Enterococcus genus is a normal component of a healthy gut microbiota, suggesting its vital role. Nosocomial infections caused mainly by E. facalis and E. faecium have been attributed to the plasticity of the Enterococcus genomes. In this study, we assessed the probiotic and safety characteristics of two E. lactis strains isolated from the human gut microbiota using in-vitro and in silico approaches. Additionally, the safety of the E. lactis species was evaluated using comparative genomics analysis. RESULTS: The two E. lactis strains 10NA and 50NA showed resistance to bile salts and acid tolerance with antibacterial activity against Escherichia coli, Salmonella typhi, and Clostridioides difficile. For safety assays, the two strains did not display any type of hemolysis on blood agar, and the survival of Caco-2 cells was not significantly different (P-value > 0.05) compared to the control using cell free supernatants at 100% (v/v), 50% (v/v), 10% (v/v), and 5% (v/v) concentrations. Regarding antibiotic susceptibility, both strains were sensitive to vancomycin, tetracycline, and chloramphenicol. Comprehensive whole-genome analysis revealed no concerning associations between virulence or antibiotic resistance genes and any of the identified mobile genetic elements. Comparative genome analysis with closely related E. faecium species genomes revealed the distinctive genomic safety of the E. lactis species. CONCLUSIONS: Our two E. lactis strains showed promising probiotic properties in-vitro. Their genomes were devoid of any transferable antibiotic resistance genes. In silico comparative analysis confirmed the safety of the E. lactis species. These results suggest that E. lactis species could be a potential source for safer Enterococcus probiotic supplements.


Assuntos
Enterococcus faecium , Probióticos , Humanos , Células CACO-2 , Testes de Sensibilidade Microbiana , Enterococcus/genética , Antibacterianos , Genômica , Enterococcus faecium/genética
4.
Environ Sci Pollut Res Int ; 30(39): 90892-90905, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37466839

RESUMO

This research aimed to evaluate the preventing effects of naringin, naringenin, and their combination on liver injury induced by Taxol (paclitaxel) in Wistar rats. Male Wistar rats received 2 mg/kg Taxol intraperitoneal injections twice weekly on the second and fifth days of each week for 6 weeks. During the same period as Taxol administration, rats were given naringin, naringenin, or a combination of the two (10 mg/kg b.wt) every other day. Treatment with naringin and/or naringenin reduced the abnormally high serum levels of total bilirubin, aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase, and gamma-glutamyl transferase in Taxol-treated rats. It also significantly increased the level of serum albumin, indicating an improvement in the liver. The perturbed histological liver changes were markedly improved due to the naringin and/or naringenin treatment in Taxol-administered rats. Additionally, the treatments reduced high hepatic lipid peroxidation and increased liver glutathione content as well as the activities of superoxide dismutase and glutathione peroxidase. Furthermore, the treatments reduced the levels of alpha-fetoprotein and caspase-3, a pro-apoptotic mediator. The naringin and naringenin mixture appeared more effective in improving organ function and structural integrity. In conclusion, naringin and naringenin are suggested to employ their hepatoprotective benefits via boosting the body's antioxidant defense system, reducing inflammation, and suppressing apoptosis.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Ratos , Masculino , Animais , Ratos Wistar , Paclitaxel/toxicidade , Paclitaxel/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Fígado , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Apoptose , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Peroxidação de Lipídeos , Alanina Transaminase/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-37275575

RESUMO

Paclitaxel, one of the most effective chemotherapeutic drugs, is used to treat various cancers but it is exceedingly toxic when used long-term and can harm the liver. This study aimed to see if rutin, hesperidin, and their combination could protect male Wistar rats against paclitaxel (Taxol)-induced hepatotoxicity. Adult male Wistar rats were subdivided into 5 groups (each of six rats). The normal group was orally given the equivalent volume of vehicles for 6 weeks. The paclitaxel-administered control group received intraperitoneal injection of paclitaxel at a dose of 2 mg/Kg body weight twice a week for 6 weeks. Treated paclitaxel-administered groups were given paclitaxel similar to the paclitaxel-administered control group together with oral supplementation of rutin, hesperidin, and their combination at a dose of 10 mg/Kg body weight every other day for 6 weeks. The treatment of paclitaxel-administered rats with rutin and hesperidin significantly reduced paclitaxel-induced increases in serum alanine transaminase, aspartate transaminase, lactate dehydrogenase, alkaline phosphatase, and gamma-glutamyl transferase activities as well as total bilirubin level and liver lipid peroxidation. However, the levels of serum albumin, liver glutathione content, and the activities of liver superoxide dismutase and glutathione peroxidase increased. Furthermore, paclitaxel-induced harmful hepatic histological changes (central vein and portal area blood vessel congestion, fatty changes, and moderate necrotic changes with focal nuclear pyknosis, focal mononuclear infiltration, and Kupffer cell proliferation) were remarkably enhanced by rutin and hesperidin treatments. Moreover, the elevated hepatic proapoptotic mediator (caspase-3) and pro-inflammatory cytokine (tumor necrosis factor-α) expressions were decreased by the three treatments in paclitaxel-administered rats. The cotreatment with rutin and hesperidin was the most effective in restoring the majority of liver function and histological integrity. Therefore, rutin, hesperidin, and their combination may exert hepatic protective effects in paclitaxel-administered rats by improving antioxidant defenses and inhibiting inflammation and apoptosis.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36874615

RESUMO

Paclitaxel is a primary chemotherapy agent that displays antitumor activity against a variety of solid tumors. However, the clinical effectiveness of the drug is hampered by its nephrotoxic and cardiotoxic side effects. Thus, this investigation aimed at assessing the protective effects of rutin, hesperidin, and their combination to alleviate nephrotoxicity caused by paclitaxel (Taxol), cardiotoxicity in male Wistar rats, as well as oxidative stress. Rutin (10 mg/kg body weight), hesperidin (10 mg/kg body weight), and their mixture were given orally every other day for six weeks. Rats received intraperitoneal injections of paclitaxel twice weekly, on the second and fifth days of the week, at a dose of 2 mg/kg body weight. In paclitaxel-treated rats, the treatment of rutin and hesperidin decreased the elevated serum levels of creatinine, urea, and uric acid, indicating a recovery of kidney functions. The cardiac dysfunction in paclitaxel-treated rats that got rutin and hesperidin treatment also diminished, as shown by a substantial reduction in elevated CK-MB and LDH activity. Following paclitaxel administration, the severity of the kidney and the heart's histopathological findings and lesion scores were markedly decreased by rutin and hesperidin administration. Moreover, these treatments significantly reduced renal and cardiac lipid peroxidation while markedly increased GSH content and SOD and GPx activities. Thus, paclitaxel likely induces toxicity in the kidney and the heart by producing oxidative stress. The treatments likely countered renal and cardiac dysfunction and histopathological changes by suppressing oxidative stress and augmenting the antioxidant defenses. Rutin and hesperidin combination was most efficacious in rescuing renal and cardiac function as well as histological integrity in paclitaxel-administered rats.

7.
Artigo em Inglês | MEDLINE | ID: mdl-36212979

RESUMO

This study assessed the preventive properties of naringin and naringenin on paclitaxel-induced nephrotoxicity and cardiotoxicity in adult male Wistar rats. Intraperitoneal injection of paclitaxel 2 mg/kg body weight, two days/week on the 2nd and 5th days of each week, with or without oral administration of naringin and/or naringenin 10 mg/kg body weight every other day, was continued for six weeks. Treatment of rats with naringin and/or naringenin significantly reversed elevated serum creatinine, urea, and uric acid levels caused by paclitaxel, reflecting improved kidney function. Similarly, heart dysfunction induced by paclitaxel was alleviated after treatment with naringin and/or naringenin, as evidenced by significant decreases in elevated CK-MB and LDH activities. After drug administration, histopathological findings and lesion scores in the kidneys and heart were markedly decreased by naringin and/or naringenin. Moreover, the treatments reversed renal and cardiac lipid peroxidation and the negative impacts on antioxidant defenses via raising GSH, SOD, and GPx. The preventive effects of naringin and naringenin were associated with suppressing oxidative stress and reestablishing antioxidant defenses. A combination of naringin and naringenin was the most efficacious in rescuing organ function and structure.

8.
Oxid Med Cell Longev ; 2022: 2710607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936216

RESUMO

The presented study was performed to verify whether rutin and/or quercetin can inhibit liver injury induced by doxorubicin (DXR) in male Wistar rats. In this study, male Wistar rats were treated via the oral route with rutin and quercetin (50 mg/kg) either alone or in combination every other day for five weeks concomitant with receiving intraperitoneal DXR (2 mg/kg) two times a week for five successive weeks. Quercetin, rutin, and their combination significantly improved the deteriorated serum AST, ALT, and ALP activities and total bilirubin level, as well as albumin, AFP, and CA 19.9 levels in DXR-injected rats. Treatments of the DXR-injected group with quercetin and rutin prevented the elevation in liver lipid peroxidation and the reduction in superoxide dismutase, glutathione-S-transferase and glutathione peroxidase activities, and glutathione content. Treatments with quercetin and rutin significantly repressed the elevated expression of liver p53 and TNF-α and enhanced Nrf2 expression. Furthermore, the treatments significantly reduced DXR-induced liver histological changes. In conclusion, rutin and quercetin either alone or in combination may have potential preventive effects against DXR-induced hepatotoxicity through inhibiting oxidative stress, inflammation, and apoptosis as well as modulating the Nrf2 expression.


Assuntos
Hepatite , Quercetina , Animais , Masculino , Ratos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Doxorrubicina/toxicidade , Glutationa/metabolismo , Hepatite/metabolismo , Inflamação/patologia , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Quercetina/farmacologia , Quercetina/uso terapêutico , Ratos Wistar , Rutina/farmacologia , Rutina/uso terapêutico
9.
Comb Chem High Throughput Screen ; 25(8): 1336-1344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34151757

RESUMO

BACKGROUND: Various phenolics show inhibitory activity towards xanthine oxidase (XO), an enzyme that generates reactive oxygen species which cause oxidative damage. OBJECTIVE: This study investigated the XO inhibitory activity of Euphorbia peplus phenolics. METHODS: The dried powdered aerial parts of E. peplus were extracted, fractioned and phenolics were isolated and identified. The XO inhibitory activity of E. peplus extract (EPE) and the isolated phenolics was investigated in vitro and in vivo. RESULTS: Three phenolics were isolated from the ethyl acetate fraction of E. peplus. All isolated compounds and the EPE showed inhibitory activity towards XO in vitro. In hyperuricemic rats, EPE and the isolated phenolics decreased uric acid and XO activity. Molecular docking showed the binding modes of isolated phenolics with XO, depicting significant interactions with the active site amino acid residues. Molecular dynamics simulation trajectories confirmed the interaction of isolated phenolics with XO by forming hydrogen bonds with the active site residues. Also, the root mean square (RMS) deviations of XO and phenolics-XO complexes achieved equilibrium and fluctuated during the 10 ns MD simulations. The radius of gyration and solvent accessible surface area investigations showed that different systems were stabilized at ≈ 2500 ps. The RMS fluctuations profile depicted that the drug binding site exhibited a rigidity behavior during the simulation. CONCLUSION: In vitro, in vivo and computational investigations showed the XO inhibitory activity of E. peplus phenolics. These phenolics might represent promising candidates for the development of XO inhibitors.


Assuntos
Euphorbia , Hiperuricemia , Animais , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Fenóis/farmacologia , Ratos , Xantina Oxidase
10.
Curr Pharm Des ; 27(4): 513-530, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33245267

RESUMO

Flavonoids, the main class of polyphenols, are characterized by the presence of 2-phenyl-benzo-pyrane nucleus. They are found in rich quantities in citrus fruits. Citrus flavonoids are classified into flavanones, flavones, flavonols, polymethoxyflavones and anthocyanins (found only in blood oranges). Flavanones are the most abundant flavonoids in citrus fruits. In many situations, there are structure-function relationships. Due to their especial structures and presence of many hydroxyls, polymethoxies and glycoside moiety, the flavonoids have an array of multiple biological and pharmacological activities. This article provides an updated overview of the differences in chemical structures of the classes and members of citrus flavonoids and their benefits in health and diseases. The review article also sheds light on the mechanisms of actions of citrus flavonoids in the treatment of different diseases, including arthritis, diabetes mellitus, cancer and neurodegenerative disorders as well as liver, kidney and heart diseases. The accumulated and updated knowledge in this review may provide useful information and ideas in the discovery of new strategies for the use of citrus flavonoids in the protection, prevention and therapy of diseases.


Assuntos
Citrus , Flavanonas , Flavonas , Flavonoides/farmacologia , Polifenóis
11.
Anaerobe ; 63: 102206, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32339663

RESUMO

Clostridium difficile infection (CDI) is a common cause of morbidity and mortality in hospitalized patients worldwide. The major problem facing current treatment is multiple recurrences, prompting the need for alternative therapies. In this study we isolated bacterial species, from Egyptian individuals' stool, with antimicrobial activity against clinical isolates of C. difficile and tried to examine the nature of the produced antimicrobials. In vitro antibacterial activity against C. difficile was initially screened in 123 fecal samples cultures using an agar overlay method. The isolates with antimicrobial activity against C. difficile in addition to Clostridium isolates were identified using partial 16S rDNA gene sequencing analysis. The isolates acting against C. difficile belonged to Lactobacillus, Enterococcus and Clostridium genera. The concentrated cell-free supernatants (CFSs) from these bacterial isolates were examined for antimicrobial activity against C. difficile growth by broth dilution method. 10 x concentrated CFSs of five isolates showed inhibition for C. difficile growth which was significantly different (p < 0.001) from control. Lactobacillus agilis T99A and Clostridium butyricum T58A isolates were selected for further evaluation of the produced antimicrobials. The antimicrobial activity of 10x CFSs of the two isolates was stable after enzymatic treatment with proteinase K or heating treatments up to 90 °C or neutralizing pH. The spectrum of activity of the two isolates was evaluated using different gram-positive and gram-negative bacterial species and did not show antimicrobial activity against these species. Our results showed two unconventional bacterial isolates: L. agilis T99A and C. butyricum T58A producing extracellular thermo stable antimicrobial agents against C. difficile clinical isolates.


Assuntos
Antibacterianos , Bactérias Anaeróbias/metabolismo , Clostridioides difficile , Infecções por Clostridium , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/microbiologia , Clostridium butyricum/metabolismo , Fezes/microbiologia , Humanos , Lactobacillus/metabolismo , Interações Microbianas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA