Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Imaging Radiat Oncol ; 28: 100512, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38111501

RESUMO

Background and purpose: Accurate CT numbers in Cone Beam CT (CBCT) are crucial for precise dose calculations in adaptive radiotherapy (ART). This study aimed to generate synthetic CT (sCT) from CBCT using deep learning (DL) models in head and neck (HN) radiotherapy. Materials and methods: A novel DL model, the 'self-attention-residual-UNet' (ResUNet), was developed for accurate sCT generation. ResUNet incorporates a self-attention mechanism in its long skip connections to enhance information transfer between the encoder and decoder. Data from 93 HN patients, each with planning CT (pCT) and first-day CBCT images were used. Model performance was evaluated using two DL approaches (non-adversarial and adversarial training) and two model types (2D axial only vs. 2.5D axial, sagittal, and coronal). ResUNet was compared with the traditional UNet through image quality assessment (Mean Absolute Error (MAE), Peak-Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM)) and dose calculation accuracy evaluation (DVH deviation and gamma evaluation (1 %/1mm)). Results: Image similarity evaluation results for the 2.5D-ResUNet and 2.5D-UNet models were: MAE: 46±7 HU vs. 51±9 HU, PSNR: 66.6±2.0 dB vs. 65.8±1.8 dB, and SSIM: 0.81±0.04 vs. 0.79±0.05. There were no significant differences in dose calculation accuracy between DL models. Both models demonstrated DVH deviation below 0.5 % and a gamma-pass-rate (1 %/1mm) exceeding 97 %. Conclusions: ResUNet enhanced CT number accuracy and image quality of sCT and outperformed UNet in sCT generation from CBCT. This method holds promise for generating precise sCT for HN ART.

2.
Med Phys ; 50(12): 7891-7903, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37379068

RESUMO

BACKGROUND: Automatic patient-specific quality assurance (PSQA) is recently explored using artificial intelligence approaches, and several studies reported the development of machine learning models for predicting the gamma pass rate (GPR) index only. PURPOSE: To develop a novel deep learning approach using a generative adversarial network (GAN) to predict the synthetic measured fluence. METHODS AND MATERIALS: A novel training method called "dual training," which involves the training of the encoder and decoder separately, was proposed and evaluated for cycle GAN (cycle-GAN) and conditional GAN (c-GAN). A total of 164 VMAT treatment plans, including 344 arcs (training data: 262, validation data: 30, and testing data: 52) from various treatment sites, were selected for prediction model development. For each patient, portal-dose-image-prediction fluence from TPS was used as input, and measured fluence from EPID was used as output/response for model training. Predicted GPR was derived by comparing the TPS fluence with the synthetic measured fluence generated by the DL models using gamma evaluation of criteria 2%/2 mm. The performance of dual training was compared against the traditional single-training approach. In addition, we also developed a separate classification model specifically designed to detect automatically three types of errors (rotational, translational, and MU-scale) in the synthetic EPID-measured fluence. RESULTS: Overall, the dual training improved the prediction accuracy of both cycle-GAN and c-GAN. Predicted GPR results of single training were within 3% for 71.2% and 78.8% of test cases for cycle-GAN and c-GAN, respectively. Moreover, similar results for dual training were 82.7% and 88.5% for cycle-GAN and c-GAN, respectively. The error detection model showed high classification accuracy (>98%) for detecting errors related to rotational and translational errors. However, it struggled to differentiate the fluences with "MU scale error" from "error-free" fluences. CONCLUSION: We developed a method to automatically generate the synthetic measured fluence and identify errors within them. The proposed dual training improved the PSQA prediction accuracy of both the GAN models, with c-GAN demonstrating superior performance over the cycle-GAN. Our results indicate that the c-GAN with dual training approach combined with error detection model, can accurately generate the synthetic measured fluence for VMAT PSQA and identify the errors. This approach has the potential to pave the way for virtual patient-specific QA of VMAT treatments.


Assuntos
Aprendizado Profundo , Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Inteligência Artificial , Aprendizado de Máquina , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
3.
J Pak Med Assoc ; 69(6): 896-898, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31201400

RESUMO

To report a case of chondrosarcoma of right big toe with left orbital and left infra temporal metastases. Chondrosarcoma is the second most frequent primary malignant tumour of the bone. A 56 year old man had history of trauma on his right big toe, which was amputated and the biopsy in 2011 at Sindh Institute of Urology and Transplantation (SIUT) revealed chondrosarcoma with clear margins. Eventually the patient was presented with swelling of the left eye, pain and gradual loss of vision of that eye. Later a CT scan of his chest, brain and orbit showed pulmonary and pleural based nodule, with mediastinal and hilar lymphadenopathy representing metastatic deposit in left orbit, extending to left infra temporal region. A treatment of palliative chemotherapy was started with doxorubicin and ifosfamide, after which he was referred for radiotherapy. At that time he had loss of vision, pain and exopthalamus, and palliative radiotherapy was delivered to the left orbit with the prescribed dose of30 Gy/300cGy×10 fraction. Thereafter his case will be followed up at the oncology OPD after a 03 month interval.


Assuntos
Neoplasias Ósseas/patologia , Condrossarcoma/secundário , Neoplasias Pulmonares/secundário , Neoplasias Orbitárias/secundário , Neoplasias da Base do Crânio/secundário , Falanges dos Dedos do Pé/patologia , Condrossarcoma/diagnóstico por imagem , Humanos , Fossa Infratemporal , Masculino , Pessoa de Meia-Idade , Neoplasias Orbitárias/diagnóstico por imagem , Neoplasias da Base do Crânio/diagnóstico por imagem , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA