Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36433053

RESUMO

Foam insulation materials are widely used in the construction industry due to their low thermal conductivity attributable to their microstructures and their low-conductivity blowing agents and affordability. In this study, we evaluate how the thermal performance of foam insulation materials used for the exterior walls of buildings, viz., extruded polystyrene (XPS), polyisocyanurate (PIR), and phenolic foam (PF), age over the life cycle of a building. To compare the aging of thermal performance during the life cycle of a building, each material was tested at 70 and 110 °C and with slicing acceleration according to EN and ISO standards. The thermal conductivity of each foam insulation material was measured using a heat flow meter at an operating temperature of 23 °C and converted into thermal resistance values. Different foam insulation materials have different aging procedures according to material-specific EN standards, while ISO 11561 applies the same procedure to all material classifications. Upon comparing the aged values according to ISO and EN standards to the initial values, the analysis showed a change rate of 23 to 26% in PIR and 18 to 20% in PF. In XPS, a rate of change of 10 to 23.8% was calculated. Our results indicated that the slicing acceleration induced a thermal resistance reduction rate about three times faster than aging at 70 °C. However, the long-term changed thermal resistance values of the foam insulation material applied via the calculating procedure specified in the ISO and EN standards were similar.

2.
J Nanosci Nanotechnol ; 18(3): 2109-2112, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448723

RESUMO

Innovative nanoscale ZnO-laponite-polyvinyl alcohol composites (NZLPc) were developed as a valid alternative to nanoscale photocatalysts for mineralization of chlorinated hydrocarbons without difficulties in recovery of nanoscale photocatalyst particles. NZLPc were synthesized by mixing nanoscale ZnO particles with laponite in PVA solution, and by crosslinking PVA solution in the presence of boric acid (≥1.6 M). Different mixing ratios of the raw materials were investigated to develop the stable NZLPc, and X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy characterizations were performed. From the results, a 3:1:1:10 ratio of ZnO, laponite, PVA, and deionized water by weight was appropriate to form spherical NZLPc with high porosities and enhanced mechanical strengths. Also, the degradation efficiencies of trichloroethylene were significantly improved with both NZLPc and UV irradiation, indicating that ZnO-mediated heterogeneous photocatalytic degradation occurred. Thus, the proposed synthesis of NZLPc paves a way for the economical and effective photocatalytic approach to remove the recalcitrant organic compounds in water through the multiple reaction processes (i.e., sorption, photolysis, and photocatalysis).

3.
J Hazard Mater ; 263 Pt 2: 569-74, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24239256

RESUMO

The feasibility of nano-ZnO/Laponite composites (NZLc) as a valid alternative to TiO2 to mineralize trichloroethylene (TCE) without difficulties for recovery of photocatalysts was evaluated. Based on the experimental observations, the removal of TCE using NZLc under UV irradiation was multiple reaction processes (i.e., sorption, photolysis, and photocatalysis). Sorption of TCE was thermodynamically favorable due to the hydrophobic partitioning into crosslinked poly vinyl alcohol, and the adsorption onto high-surface-area mineral surfaces of both ZnO and Laponite. The degradation efficiency of TCE can be significantly improved using NZLc under UV irradiation, indicating that ZnO-mediated heterogeneous photocatalytic degradation occurred. However, the degradation efficiency was found to vary with experimental conditions (e.g., initial concentration of TCE, loading amount of NZLc, the intensity of light and initial solution pH). Although the removal of TCE by NZLc was found to be a complex function of sorption, photolysis, and photocatalysis, the photocatalytic degradation of TCE on the surface of ZnO was critical. Consequently, developed NZLc can be applied as a valid alternative to suspended TiO2 powder, and overcome drawbacks (e.g., filtration and recovery of photocatalysts) in degradation of TCE for various water resources.


Assuntos
Fotólise , Silicatos/química , Tricloroetileno/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Óxido de Zinco/química , Adsorção , Catálise , Reagentes de Ligações Cruzadas/química , Filtração , Concentração de Íons de Hidrogênio , Cinética , Luz , Nanopartículas/química , Álcool de Polivinil/química , Pós , Termodinâmica
4.
Environ Sci Technol ; 45(20): 8873-80, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21899291

RESUMO

NanoGene assay is a magnetic bead and quantum dot nanoparticles based gene quantification assay. It relies on a set of probe and signaling probe DNAs to capture the target DNA via hybridization. We have demonstrated the inhibition resistance of the NanoGene assay using humic acids laden genomic DNA (gDNA). At 1 µg of humic acid per mL, quantitiative PCR (qPCR) was inhibited to 0% of its quantification capability whereas NanoGene assay was able to maintain more than 60% of its quantification capability. To further increase the inhibition resistance of NanoGene assay at high concentration of humic acids, we have identified the specific mechanisms that are responsible for the inhibition. We examined five potential mechanisms with which the humic acids can partially inhibit our NanoGene assay. The mechanisms examined were (1) adsorption of humic acids on the particle surface; (2) particle aggregation induced by humic acids; (3) fluorescence quenching of quantum dots by humic acids during hybridization; (4) humic acids mimicking of target DNA; and (5) nonspecific binding between humic acids and target gDNA. The investigation showed that no adsorption of humic acids onto the particles' surface was observed for the humic acids' concentration. Particle aggregation and fluorescence quenching were also negligible. Humic acids also did not mimic the target gDNA except 1000 µg of humic acids per mL and hence should not contribute to the partial inhibition. Four of the above mechanisms were not related to the inhibition effect of humic acids particularly at the environmentally relevant concentrations (<100 µg/mL). However, a substantial amount of nonspecific binding was observed between the humic acids and target gDNA. This possibly results in lesser amount of target gDNA being captured by the probe and signaling DNA.


Assuntos
DNA/química , Substâncias Húmicas , Hibridização de Ácido Nucleico/métodos , Nanopartículas/química , Reação em Cadeia da Polimerase , Pontos Quânticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA