Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Blood Adv ; 4(6): 1102-1114, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32203584

RESUMO

In utero hematopoietic cell transplantation (IUHCT) has the potential to cure congenital hematologic disorders including sickle cell disease. However, the window of opportunity for IUHCT closes with the acquisition of T-cell immunity, beginning at approximately 14 weeks gestation, posing significant technical challenges and excluding from treatment fetuses evaluated after the first trimester. Here we report that regulatory T cells can promote alloengraftment and preserve allograft tolerance after the acquisition of T-cell immunity in a mouse model of late-gestation IUHCT. We show that allografts enriched with regulatory T cells harvested from either IUHCT-tolerant or naive mice engraft at 20 days post coitum (DPC) with equal frequency to unenriched allografts transplanted at 14 DPC. Long-term, multilineage donor cell chimerism was achieved in the absence of graft-versus-host disease or mortality. Decreased alloreactivity among recipient T cells was observed consistent with donor-specific tolerance. These findings suggest that donor graft enrichment with regulatory T cells could be used to successfully perform IUHCT later in gestation.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Feminino , Camundongos , Gravidez , Linfócitos T Reguladores , Quimeras de Transplante , Condicionamento Pré-Transplante
2.
Front Pediatr ; 7: 385, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620413

RESUMO

Bladder urothelial carcinoma (UC) it is the fifth most prevalent carcinoma in humans, nevertheless in children and young adults it's very rare. It usually occurs in older adults. Literature on UC in pediatric population is limited and important information (risk factors, follow-up protocols, etc.) are poorly defined. We present an 11-year-old boy with a painful macroscopic hematuria. Ultrasound revealed a heterogeneous intravesical mass without extravesical extension, which was confirmed by computed tomography (CT) and magnetic resonance imaging (MRI). The first biopsy was compatible with urothelial papilloma. After 1 year, he returned with a bigger mass. Transurethral resection of the bladder (TURB) was performed and immunohistochemistry showed low-grade papillary UC with a high-grade component, with tumor free margin. Tumor had mutations in the BRAF and KRAS genes. Two and a half years after the resection the patient has no recurrence. Less than 1% of bladder UC occur in the first two decades of life. Gross hematuria is a common symptom. Ultrasound is generally the first diagnostic tool. MRI is also helpful, but cystoscopy allows definitive diagnosis. Transurethral resection of the bladder (TURB) is the standard treatment, with good results and low recurrence rate, and it was the treatment of choice for our patient, that remains free of disease. The BRAF and KRAS gene mutations were never described before in pediatric UC. There are only few cases in literature of pediatric UC that present a tumor genetic profile; therefore, our case report adds more information to this very rare disease in children.

3.
Blood ; 134(22): 1983-1995, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31570489

RESUMO

Host cell competition is a major barrier to engraftment after in utero hematopoietic cell transplantation (IUHCT). Here we describe a cell-engineering strategy using glycogen synthase kinase-3 (GSK3) inhibitor-loaded nanoparticles conjugated to the surface of donor hematopoietic cells to enhance their proliferation kinetics and ability to compete against their fetal host equivalents. With this approach, we achieved remarkable levels of stable, long-term hematopoietic engraftment for up to 24 weeks post-IUHCT. We also show that the salutary effects of the nanoparticle-released GSK3 inhibitor are specific to donor progenitor/stem cells and achieved by a pseudoautocrine mechanism. These results establish that IUHCT of hematopoietic cells decorated with GSK3 inhibitor-loaded nanoparticles can produce therapeutic levels of long-term engraftment and could therefore allow single-step prenatal treatment of congenital hematological disorders.


Assuntos
Comunicação Autócrina , Engenharia Celular , Inibidores Enzimáticos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Sobrevivência de Enxerto/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Nanopartículas/química , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C
4.
Stem Cells ; 37(9): 1176-1188, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31116895

RESUMO

In utero transplantation (IUT) of hematopoietic stem cells (HSCs) has been proposed as a strategy for the prenatal treatment of congenital hematological diseases. However, levels of long-term hematopoietic engraftment achieved in experimental IUT to date are subtherapeutic, likely due to host fetal HSCs outcompeting their bone marrow (BM)-derived donor equivalents for space in the hematopoietic compartment. In the present study, we demonstrate that amniotic fluid stem cells (AFSCs; c-Kit+/Lin-) have hematopoietic characteristics and, thanks to their fetal origin, favorable proliferation kinetics in vitro and in vivo, which are maintained when the cells are expanded. IUT of autologous/congenic freshly isolated or cultured AFSCs resulted in stable multilineage hematopoietic engraftment, far higher to that achieved with BM-HSCs. Intravascular IUT of allogenic AFSCs was not successful as recently reported after intraperitoneal IUT. Herein, we demonstrated that this likely due to a failure of timely homing of donor cells to the host fetal thymus resulted in lack of tolerance induction and rejection. This study reveals that intravascular IUT leads to a remarkable hematopoietic engraftment of AFSCs in the setting of autologous/congenic IUT, and confirms the requirement for induction of central tolerance for allogenic IUT to be successful. Autologous, gene-engineered, and in vitro expanded AFSCs could be used as a stem cell/gene therapy platform for the in utero treatment of inherited disorders of hematopoiesis. Stem Cells 2019;37:1176-1188.


Assuntos
Líquido Amniótico/citologia , Células-Tronco Fetais/citologia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Feminino , Doenças Fetais/terapia , Células-Tronco Fetais/transplante , Sobrevivência de Enxerto , Doenças Hematológicas/terapia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Gravidez , Transplante Autólogo
5.
Sci Transl Med ; 11(488)2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996081

RESUMO

Monogenic lung diseases that are caused by mutations in surfactant genes of the pulmonary epithelium are marked by perinatal lethal respiratory failure or chronic diffuse parenchymal lung disease with few therapeutic options. Using a CRISPR fluorescent reporter system, we demonstrate that precisely timed in utero intra-amniotic delivery of CRISPR-Cas9 gene editing reagents during fetal development results in targeted and specific gene editing in fetal lungs. Pulmonary epithelial cells are predominantly targeted in this approach, with alveolar type 1, alveolar type 2, and airway secretory cells exhibiting high and persistent gene editing. We then used this in utero technique to evaluate a therapeutic approach to reduce the severity of the lethal interstitial lung disease observed in a mouse model of the human SFTPCI73T mutation. Embryonic expression of SftpcI73T alleles is characterized by severe diffuse parenchymal lung damage and rapid demise of mutant mice at birth. After in utero CRISPR-Cas9-mediated inactivation of the mutant SftpcI73T gene, fetuses and postnatal mice showed improved lung morphology and increased survival. These proof-of-concept studies demonstrate that in utero gene editing is a promising approach for treatment and rescue of monogenic lung diseases that are lethal at birth.


Assuntos
Sistemas CRISPR-Cas/genética , Pneumopatias/genética , Animais , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Edição de Genes/métodos , Humanos , Camundongos , Mutação/genética , Proteína C Associada a Surfactante Pulmonar/genética
6.
Nat Med ; 24(10): 1513-1518, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30297903

RESUMO

In utero gene editing has the potential to prenatally treat genetic diseases that result in significant morbidity and mortality before or shortly after birth. We assessed the viral vector-mediated delivery of CRISPR-Cas9 or base editor 3 in utero, seeking therapeutic modification of Pcsk9 or Hpd in wild-type mice or the murine model of hereditary tyrosinemia type 1, respectively. We observed long-term postnatal persistence of edited cells in both models, with reduction of plasma PCSK9 and cholesterol levels following in utero Pcsk9 targeting and rescue of the lethal phenotype of hereditary tyrosinemia type 1 following in utero Hpd targeting. The results of this proof-of-concept work demonstrate the possibility of efficiently performing gene editing before birth, pointing to a potential new therapeutic approach for selected congenital genetic disorders.


Assuntos
Terapia Genética , Oxirredutases/genética , Pró-Proteína Convertase 9/genética , Tirosinemias/terapia , Animais , Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Edição de Genes , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Humanos , Oxirredutases/uso terapêutico , Pró-Proteína Convertase 9/uso terapêutico , Tirosinemias/genética , Tirosinemias/patologia
7.
J Vis Exp ; (140)2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30371676

RESUMO

In utero transplantation (IUT) is a unique and versatile mode of therapy that can be used to introduce stem cells, viral vectors, or any other substances early in the gestation. The rationale behind IUT for therapeutic purposes is based on the small size of the fetus, the fetal immunologic immaturity, the accessibility and proliferative nature of the fetal stem or progenitor cells, and the potential to treat a disease or the onset of symptoms prior to birth. Taking advantage of these normal developmental properties of the fetus, the delivery of hematopoietic stem cells (HSC) via an IUT has the potential to treat congenital hematologic disorders such as sickle cell disease, without the required myeloablative or immunosuppressive conditioning required for postnatal HSC transplants. Similarly, the accessibility of progenitor cells in multiple organs during development potentially allows for a more efficient targeting of stem/progenitor cells following an IUT of viral vectors for gene therapy or genome editing. Additionally, IUT can be used to study normal developmental processes including, but not limited to, the development of immunologic tolerance. The murine model provides a valuable and affordable means to understanding the potential and limitations of IUT prior to pre-clinical large animal studies and an eventual clinical application. Here, we describe a protocol for performing an IUT in the murine fetus through intravenous and intra-amniotic routes. This protocol has been used successfully to elucidate the necessary conditions and mechanisms behind in utero hematopoietic stem cell transplantation, tolerance induction, and in utero gene therapy.


Assuntos
Terapias Fetais/métodos , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Animais , Feminino , Feto , Camundongos , Modelos Animais , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA