Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Anim Cells Syst (Seoul) ; 28(1): 466-480, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39296537

RESUMO

Hepatitis B virus (HBV) is a sex-specific pathogen that is more severe in males than in females. Sex disparities in HBV infection have been attributed to hormonal differences between males and females. However, whether HBV infection affects the metabolic signatures of steroid hormones and how these influences viral replication remains unclear. In this study, we investigated whether HBV infection alters steroid metabolism and its effects on HBV replication. Serum samples from male and female mice obtained after the hydrodynamic injection of replication-competent HBV plasmids were subjected to quantitative steroid profiling. Serum steroid levels in mice were analyzed using an in vitro metabolism assay with the mouse liver S9 fraction. The alteration of steroids by HBV infection was observed only in male mice, particularly with significant changes in androgens, whereas no significant hormonal changes were observed in female mice. Among the altered steroids, dehydroepiandrosterone (DHEA) levels increased the most in male mice after HBV infection. An in vitro metabolism assay revealed that androgen levels were significantly reduced in HBV-infected male mice. Furthermore, the genes involved in DHEA biosynthesis were significantly upregulated in HBV-infected male mice. Interestingly, reduced dihydrotestosterone in male mice significantly inhibits viral replication by suppressing HBV promoter activity, suggesting a viral strategy to overcome the antiviral effects of steroid hormones in males. Our data demonstrated that HBV infection can cause sex-specific changes in steroid metabolism.

2.
Cornea ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718486

RESUMO

PURPOSE: The purpose of this study was to determine the risk of herpesviral keratitis associated with 4 coronavirus disease 2019 (COVID-19) vaccines approved in South Korea, using large-scale data from the National Health Insurance Service. METHODS: The study included 8,528,254 individuals, with cohorts categorized based on COVID-19 vaccination status. Two investigations were conducted: The first aimed to assess the risk of new-onset herpesviral keratitis while the second study focused on the risk of relapse in individuals with a preexisting diagnosis. Propensity score matching was used for cohort balancing, and various covariates, including vaccine types and comorbidities, were considered. Statistical analyses, including Cox proportional hazard regression, were used to calculate adjusted hazard ratio (aHR) and assess the risk of herpesviral keratitis. RESULTS: Individuals receiving COVID-19 vaccination exhibited a higher risk of new-onset herpesviral keratitis compared with the unvaccinated control group (aHR 1.43, 95% confidence interval, 1.19-1.73). Both mRNA and non-mRNA vaccines demonstrated an increased risk. Individuals with preexisting herpetic keratitis who received COVID-19 vaccination showed a higher risk of relapse herpesviral keratitis compared with the unvaccinated control group (aHR 1.98, 95% CI, 1.29-3.03). Sensitivity analyses supported the robustness of the results. CONCLUSIONS: This analysis of a large national health insurance database suggests an increased risk of both new-onset and relapse of herpesviral keratitis associated with COVID-19 vaccination in South Korea. While COVID-19 vaccination is crucial for pandemic control, health care providers should be aware of potential herpesvirus reactivation and consider appropriate prophylaxis and treatment for at-risk individuals.

3.
Vaccine ; 42(6): 1283-1291, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38310019

RESUMO

Smallpox, caused by the variola virus belonging to the genus Orthopoxvirus, is an acute contagious disease that killed 300 million people in the 20th century. Since it was declared to be eradicated and the national immunization program against it was stopped, the variola virus has become a prospective bio-weapon. It is necessary to develop a safe vaccine that protects people from terrorism using this biological weapon and that can be administered to immunocompromised people. Our previous study reported on the development of an attenuated smallpox vaccine (KVAC103). This study evaluated cellular and humoral immune responses to various doses, frequencies, and routes of administration of the KVAC103 strain, compared to CJ-50300 vaccine, and its protective ability against the wild-type vaccinia virus Western Reserve (VACV-WR) strain was evaluated. The binding and neutralizing-antibody titers increased in a concentration-dependent manner in the second inoculation, which increased the neutralizing-antibody titer compared to those after the single injection. In contrast, the T-cell immune response (interferon-gamma positive cells) increased after the second inoculation compared to that of CJ-50300 after the first inoculation. Neutralizing-antibody titers and antigen-specific IgG levels were comparable in all groups administered KVAC103 intramuscularly, subcutaneously, and intradermally. In a protective immunity test using the VACV-WR strain, all mice vaccinated with CJ-50300 or KVAC103 showed 100% survival. KVAC103 could be a potent smallpox vaccine that efficiently induces humoral and cellular immune responses to protect mice against the VACV-WR strain.


Assuntos
Vacina Antivariólica , Varíola , Vírus da Varíola , Animais , Camundongos , Humanos , Varíola/prevenção & controle , Vacinas Atenuadas , Estudos Prospectivos , Vaccinia virus/genética , Imunidade Celular , Antígenos Virais , Anticorpos Antivirais , Camundongos Endogâmicos BALB C
4.
Vaccine ; 41(41): 6055-6063, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37648607

RESUMO

Hand, foot, and mouth disease (HFMD) is a highly contagious viral infection that is mainly caused by enterovirus 71 (EV71) and coxsackievirus 16 (CVA16). As there are no specific therapeutics for HFMD, the development of a bivalent vaccine is required to cover a broad range of infections. In this study, the effectiveness of novel monovalent and bivalent vaccines targeting EV71 C4a and CVA16 was investigated for their ability to prevent viral infections in neonatal human scavenger receptor class B member 2 (hSCARB2) transgenic mice. As hSCARB2 serves as a key viral receptor for EV71, these transgenic mice are susceptible to EV71 strains and facilitate viral binding, internalization, and uncoating processes. Antisera prepared by vaccine immunization were transferred to 2-day-old hSCARB2 transgenic mice, which were then infected with EV71 C4a or CVA16 virus. The antisera generated by each monovalent or bivalent vaccine effectively protected against EV71 C4a and CVA16 infections. The examination of tissue damage and viral contents in various organs indicated that both monovalent and bivalent antisera reduced EV71 C4a viral load in the brainstem, and no significant tissue damage was observed. During CVA16 infection, the monovalent and bivalent antisera significantly reduced viral contents in both the brainstem and muscles. These results suggest that passive immunity by monovalent and bivalent antisera can effectively protect against EV71 C4a and CVA16 infections. Thus, the development of a bivalent vaccine that can provide broad protection against both CV and EV infections may be a promising strategy in preventing HFMD.


Assuntos
Enterovirus Humano A , Doença de Mão, Pé e Boca , Humanos , Animais , Camundongos , Enterovirus Humano A/genética , Vacinas Combinadas , Doença de Mão, Pé e Boca/prevenção & controle , Soros Imunes , Camundongos Transgênicos
6.
Biomol Ther (Seoul) ; 31(3): 350-358, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37041034

RESUMO

Hand-foot-and-mouth disease (HFMD) is a viral infectious disease that occurs in children under 5 years of age. Its main causes are coxsackievirus (CV) and enterovirus (EV). Since there are no efficient therapeutics for HFMD, vaccines are effective in preventing the disease. To develop broad coverage against CV and EV, the development of a bivalent vaccine form is needed. The Mongolian gerbil is an efficient and suitable animal model of EV71 C4a and CVA16 infection used to investigate vaccine efficacy following direct immunization. In this study, Mongolian gerbils were immunized with a bivalent inactivated EV71 C4a and inactivated CVA16 vaccine to test their effectiveness against viral infection. Bivalent vaccine immunization resulted in increased Ag-specific IgG antibody production; specifically, EV71 C4a-specific IgG was increased with medium and high doses and CVA16-specific IgG was increased with all doses of immunization. When gene expression of T cell-biased cytokines was analysed, Th1, Th2, and Th17 responses were found to be highly activated in the high-dose immunization group. Moreover, bivalent vaccine immunization mitigated paralytic signs and increased the survival rate following lethal viral challenges. When the viral RNA content was determined from various organs, all three doses of bivalent vaccine immunization were found to significantly decrease viral amplification. Upon histologic examination, EV71 C4a and CVA16 induced tissue damage to the heart and muscle. However, bivalent vaccine immunization alleviated this in a dose-dependent manner. These results suggest that the bivalent inactivated EV71 C4a/CVA16 vaccine could be a safe and effective candidate HFMD vaccine.

7.
Liver Int ; 40(7): 1564-1577, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32216026

RESUMO

BACKGROUND AND AIM: Since polymerase and surface genes overlap in hepatitis B virus (HBV), an antiviral-induced mutation in the polymerase gene may alter the surface antigenicity in patients with chronic hepatitis B (CHB), but this possibility has not been clearly confirmed. This study aimed to determine the drug susceptibility and surface antigenicity of the patient-derived mutants. PATIENTS AND METHODS: Full-length HBV genomes isolated from four entecavir-resistant CHB patients were cloned and sequenced. Around 10 clones of full-length HBV obtained from each patient were analysed and registered in the NCBI GenBank. Representative clones were further characterized by in vitro drug susceptibility and surface antigenicity assays. RESULTS: The rtL180M + rtM204V mutations were common among all the clones analysed. Additionally, the ETV resistance mutations rtT184A/L, rtS202G and rtM250V were found among three patients. Most of the ETV-resistant mutants had amino acid alterations within the known epitopes recognized by T- and B-cells in the HBV surface and core antigens. The in vitro drug susceptibility assay showed that all tested clones were resistant to ETV treatment. However, they were all susceptible to ADV and TDF. More importantly, the rtI169T mutation in the RT domain, led to the sF161L mutation in the overlapping S gene, which decreased in surface antigenicity. CONCLUSIONS: The ETV resistance mutations can affect the antigenicity of the HBsAg proteins due to changes in the overlapping sequence of this surface antigen. Thus, the apparent decline or disappearance of HBsAg needs to be interpreted cautiously in patients with previous or current antiviral resistance mutations.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Antígenos de Superfície/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Guanina/análogos & derivados , Guanina/uso terapêutico , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Humanos , Lamivudina/uso terapêutico , Mutação
8.
J Hepatol ; 70(6): 1093-1102, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30794889

RESUMO

BACKGROUND & AIMS: Tenofovir disoproxil fumarate (TDF) is one the most potent nucleot(s)ide analogues for treating chronic hepatitis B virus (HBV) infection. Phenotypic resistance caused by genotypic resistance to TDF has not been reported. This study aimed to characterize HBV mutations that confer tenofovir resistance. METHODS: Two patients with viral breakthrough during treatment with TDF-containing regimens were prospectively enrolled. The gene encoding HBV reverse transcriptase was sequenced. Eleven HBV clones harboring a series of mutations in the reverse transcriptase gene were constructed by site-directed mutagenesis. Drug susceptibility of each clone was determined by Southern blot analysis and real-time PCR. The relative frequency of mutants was evaluated by ultra-deep sequencing and clonal analysis. RESULTS: Five mutations (rtS106C [C], rtH126Y [Y], rtD134E [E], rtM204I/V, and rtL269I [I]) were commonly found in viral isolates from 2 patients. The novel mutations C, Y, and E were associated with drug resistance. In assays for drug susceptibility, the IC50 value for wild-type HBV was 3.8 ±â€¯0.6 µM, whereas the IC50 values for CYE and CYEI mutants were 14.1 ±â€¯1.8 and 58.1 ±â€¯0.9 µM, respectively. The IC90 value for wild-type HBV was 30 ±â€¯0.5 µM, whereas the IC90 values for CYE and CYEI mutants were 185 ±â€¯0.5 and 790 ±â€¯0.2 µM, respectively. Both tenofovir-resistant mutants and wild-type HBV had similar susceptibility to the capsid assembly modulator NVR 3-778 (IC50 <0.4 µM vs. IC50 = 0.4 µM, respectively). CONCLUSIONS: Our study reveals that the quadruple (CYEI) mutation increases the amount of tenofovir required to inhibit HBV by 15.3-fold in IC50 and 26.3-fold in IC90. These results demonstrate that tenofovir-resistant HBV mutants can emerge, although the genetic barrier is high. LAY SUMMARY: Tenofovir is the most potent nucleotide analogue for the treatment of chronic hepatitis B virus infection and there has been no hepatitis B virus mutation that confers >10-fold resistance to tenofovir up to 8 years. Herein, we identified, for the first time, a quadruple mutation that conferred 15.3-fold (IC50) and 26.3-fold (IC90) resistance to tenofovir in 2 patients who experienced viral breakthrough during tenofovir treatment.


Assuntos
Antivirais/uso terapêutico , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Mutação , DNA Polimerase Dirigida por RNA/genética , Inibidores da Transcriptase Reversa/uso terapêutico , Tenofovir/uso terapêutico , Idoso , Linhagem Celular Tumoral , Farmacorresistência Viral/genética , Humanos , Masculino
9.
Nat Commun ; 9(1): 3284, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115930

RESUMO

Cytokines are involved in early host defense against pathogen infections. In particular, tumor necrosis factor (TNF) and interferon-gamma (IFN-γ) have critical functions in non-cytopathic elimination of hepatitis B virus (HBV) in hepatocytes. However, the molecular mechanisms and mediator molecules are largely unknown. Here we show that interleukin-32 (IL-32) is induced by TNF and IFN-γ in hepatocytes, and inhibits the replication of HBV by acting intracellularly to suppress HBV transcription and replication. The gamma isoform of IL-32 (IL-32γ) inhibits viral enhancer activities by downregulating liver-enriched transcription factors. Our data are validated in both an in vivo HBV mouse model and primary human hepatocytes. This study thus suggests that IL-32γ functions as intracellular effector in hepatocytes for suppressing HBV replication to implicate a possible mechanism of non-cytopathic viral clearance.


Assuntos
Antivirais/metabolismo , Citocinas/metabolismo , Vírus da Hepatite B/fisiologia , Interleucinas/metabolismo , Espaço Intracelular/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo , Elementos Facilitadores Genéticos/genética , Hepatite B Crônica/metabolismo , Hepatite B Crônica/patologia , Fatores Nucleares de Hepatócito/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Modelos Biológicos , Ligação Proteica , Transcrição Gênica , Replicação Viral
10.
Gut Liver ; 12(3): 331-341, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29271185

RESUMO

BACKGROUND/AIMS: Direct sequencing is the gold standard for the detection of drug-resistance mutations in hepatitis B virus (HBV); however, this procedure is time-consuming, labor-intensive, and difficult to adapt to high-throughput screening. In this study, we aimed to develop a dendron-modified DNA microarray for the detection of genotypic resistance mutations and evaluate its efficiency. METHODS: The specificity, sensitivity, and selectivity of dendron-modified slides for the detection of representative drug-resistance mutations were evaluated and compared to those of conventional slides. The diagnostic accuracy was validated using sera obtained from 13 patients who developed viral breakthrough during lamivudine, adefovir, or entecavir therapy and compared with the accuracy of restriction fragment mass polymorphism and direct sequencing data. RESULTS: The dendron-modified slides significantly outperformed the conventional microarray slides and were able to detect HBV DNA at a very low level (1 copy/µL). Notably, HBV mutants could be detected in the chronic hepatitis B patient sera without virus purification. The validation of our data revealed that this technique is fully compatible with sequencing data of drug-resistant HBV. CONCLUSIONS: We developed a novel diagnostic technique for the simultaneous detection of several drug-resistance mutations using a dendron-modified DNA microarray. This technique can be directly applied to sera from chronic hepatitis B patients who show resistance to several nucleos(t)ide analogues.


Assuntos
DNA Viral/genética , Dendrímeros/metabolismo , Farmacorresistência Viral/genética , Hepatite B Crônica/diagnóstico , Análise em Microsséries/métodos , Adenina/análogos & derivados , Adenina/uso terapêutico , Guanina/análogos & derivados , Guanina/uso terapêutico , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/genética , Humanos , Lamivudina/uso terapêutico , Mutação/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Organofosfonatos/uso terapêutico , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Gut ; 67(1): 166-178, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341749

RESUMO

OBJECTIVE: Interferons (IFNs) mediate direct antiviral activity. They play a crucial role in the early host immune response against viral infections. However, IFN therapy for HBV infection is less effective than for other viral infections. DESIGN: We explored the cellular targets of HBV in response to IFNs using proteome-wide screening. RESULTS: Using LC-MS/MS, we identified proteins downregulated and upregulated by IFN treatment in HBV X protein (HBx)-stable and control cells. We found several IFN-stimulated genes downregulated by HBx, including TRIM22, which is known as an antiretroviral protein. We demonstrated that HBx suppresses the transcription of TRIM22 through a single CpG methylation in its 5'-UTR, which further reduces the IFN regulatory factor-1 binding affinity, thereby suppressing the IFN-stimulated induction of TRIM22. CONCLUSIONS: We verified our findings using a mouse model, primary human hepatocytes and human liver tissues. Our data elucidate a mechanism by which HBV evades the host innate immune system.


Assuntos
Regiões 5' não Traduzidas/genética , Ilhas de CpG/genética , Vírus da Hepatite B/imunologia , Interferons/imunologia , Antígenos de Histocompatibilidade Menor/genética , Proteínas Repressoras/genética , Proteínas com Motivo Tripartido/genética , Animais , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Epigênese Genética , Regulação da Expressão Gênica/imunologia , Hepatócitos/metabolismo , Humanos , Evasão da Resposta Imune , Fígado/metabolismo , Metilação , Camundongos , Antígenos de Histocompatibilidade Menor/biossíntese , Proteoma , Proteínas Repressoras/biossíntese , Proteínas com Motivo Tripartido/biossíntese
12.
Clin Mol Hepatol ; 22(2): 241-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27304549

RESUMO

BACKGROUND/AIMS: Before tenofovir (TDF) become available in South Korea, combination therapy with entecavir (ETV) and adefovir (ADV) was the most potent regimen for chronic hepatitis B (CHB) patients who fail to respond to rescue therapy for drug resistance. We analyzed the efficacy of ETV-ADV combination therapy and investigated the clinical and clonal results of TDF-based rescue therapy in CHB patients refractory to this combination. METHODS: We retrospectively reviewed the medical records of CHB patients treated for up to 3 years with ETV-ADV combination therapy as a rescue therapy for drug resistance. In cases refractory to this combination, clinical and clonal analyses were performed for TDF-based rescue therapy. RESULTS: The analysis was performed on 48 patients. Twelve patients achieved a virological response (VR) within 3 years. A VR was subsequently achieved in nine of the ten patients without a VR who switched to TDF monotherapy. A VR was also achieved in six of the seven patients who switched to lamivudine-TDF combination therapy, and in two of the two patients who switched to ETV-TDF combination therapy. In an in vitro susceptibility test, viral replication was detected with TDF monotherapy but not with ETV-TDF combination therapy. CONCLUSIONS: The efficacy of ETV-ADV combination therapy was insufficient in CHB patients who were refractory to rescue therapy. A more potent regimen such as ETV-TDF combination therapy may be considered in such refractory cases.


Assuntos
Adenina/análogos & derivados , Antivirais/uso terapêutico , Guanina/análogos & derivados , Hepatite B Crônica/tratamento farmacológico , Organofosfonatos/uso terapêutico , Tenofovir/uso terapêutico , Adenina/uso terapêutico , Adulto , Idoso , DNA Viral/análise , DNA Viral/metabolismo , Farmacorresistência Viral , Quimioterapia Combinada , Feminino , Guanina/uso terapêutico , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Hepatite B Crônica/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , República da Coreia , Estudos Retrospectivos , Resultado do Tratamento
13.
J Hepatol ; 64(2): 268-277, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26409214

RESUMO

BACKGROUND & AIMS: Cytokines are key molecules implicated in the defense against virus infection. Tumor necrosis factor-alpha (TNF-α) is well known to block the replication of hepatitis B virus (HBV). However, the molecular mechanism and the downstream effector molecules remain largely unknown. METHODS: In this study, we investigated the antiviral effect and mechanism of p22-FLIP (FLICE-inhibitory protein) by ectopic expression in vitro and in vivo. In addition, to provide the biological relevance of our study, we examined that the p22-FLIP is involved in TNF-α-mediated suppression of HBV in primary human hepatocytes. RESULTS: We found that p22-FLIP, a newly discovered c-FLIP cleavage product, inhibited HBV replication at the transcriptional level in both hepatoma cells and primary human hepatocytes, and that c-FLIP conversion to p22-FLIP was stimulated by the TNF-α/NF-κB pathway. p22-FLIP inhibited HBV replication through the upregulation of HNF3ß but downregulation of HNF4α, thus inhibiting both HBV enhancer elements. Finally, p22-FLIP potently inhibited HBV DNA replication in a mouse model of HBV replication. CONCLUSIONS: Taken together, these findings suggest that the anti-apoptotic p22-FLIP serves a novel function of inhibiting HBV transcription, and mediates the antiviral effect of TNF-α against HBV replication.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Vírus da Hepatite B , Fator de Necrose Tumoral alfa , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Linhagem Celular , DNA Viral/metabolismo , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/fisiologia , Fatores Nucleares de Hepatócito/metabolismo , Hepatócitos/metabolismo , Humanos , Camundongos , Modelos Animais , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
14.
PLoS One ; 10(8): e0136728, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26322642

RESUMO

The emergence of compensatory mutations in the polymerase gene of drug resistant hepatitis B virus (HBV) is associated with treatment failure. We previously identified a multi-drug resistant HBV mutant, which displayed resistance towards lamivudine (LMV), clevudine (CLV), and entecavir (ETV), along with a strong replication capacity. The aim of this study was to identify the previously unknown compensatory mutations, and to determine the clinical relevance of this mutation during antiviral therapy. In vitro mutagenesis, drug susceptibility assay, and molecular modeling studies were performed. The rtL269I substitution conferred 2- to 7-fold higher replication capacity in the wild-type (WT) or YMDD mutation backbone, regardless of drug treatment. The rtL269I substitution alone did not confer resistance to LMV, ETV, adefovir (ADV), or tenofovir (TDF). However, upon combination with YMDD mutation, the replication capacity under LMV or ETV treatment was enhanced by several folds. Molecular modeling studies suggested that the rtL269I substitution affects template binding, which may eventually lead to the enhanced activity of rtI269-HBV polymerase in both WT virus and YMDD mutant. The clinical relevance of the rtL269I substitution was validated by its emergence in association with YMDD mutation in chronic hepatitis B (CHB) patients with sub-optimal response or treatment failure to LMV or CLV. Our study suggests that substitution at rt269 in HBV polymerase is associated with multi-drug resistance, which may serve as a novel compensatory mutation for replication-defective multi-drug resistant HBV.


Assuntos
Antivirais/uso terapêutico , Farmacorresistência Viral Múltipla/genética , Produtos do Gene pol/genética , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Adenina/análogos & derivados , Adenina/uso terapêutico , Substituição de Aminoácidos/genética , Arabinofuranosiluracila/análogos & derivados , Arabinofuranosiluracila/uso terapêutico , Linhagem Celular Tumoral , Guanina/análogos & derivados , Guanina/farmacologia , Antígenos de Superfície da Hepatite B/metabolismo , Antígenos E da Hepatite B/metabolismo , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Humanos , Lamivudina/uso terapêutico , Testes de Sensibilidade Microbiana , Modelos Moleculares , Organofosfonatos/uso terapêutico , Tenofovir/uso terapêutico , Replicação Viral/efeitos dos fármacos
15.
J Gastroenterol Hepatol ; 29(4): 843-50, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24783251

RESUMO

BACKGROUNDS AND AIMS: In chronic hepatitis B virus (HBV) infection, quantitative HBV surface antigen (qHBsAg) is useful for monitoring viral replication and treatment responses. We aimed to determine whether pre-S mutations have any effect on circulating qHBsAg. METHODS: Plasmids expressing 1­8 amino acid deletion in pre-S1 ("pre-S1Δ1-8") and 3-25 amino acid deletion in pre-S2 ("pre-S2Δ3-25") were constructed. At 72 h posttransfection into Huh7 cells, qHBsAg were measured using electrochemiluminescence immunoassay analyzer. To mimic milieus of quasispecies, we co-transfected either pre-S1Δ1-8 or pre-S2Δ3-25 with wild type (WT). RESULTS: Pre-S mutations affected transcription and replication ability of HBV because of altered overlapping polymerase. Compared with WT, extracellular qHBsAg in pre-S1Δ1-8 and pre-S2Δ3-25 were on average 3.87-fold higher and 0.92-fold lower, respectively, whereas intracellular qHBsAg in pre-S1Δ1-8 and pre-S2Δ3-25 were 0.57-fold lower and 1.60-fold higher, respectively. Immunofluorescence staining of cellular HBsAg showed that pre-S1Δ1-8 had less staining and that pre-S2Δ3-25 had denser staining. As ratios of either pre-S1Δ1-8 or pre-S2Δ3-25:WT increased from 0:10 to 10:0 gradually, relative extracellular qHBsAg increased from 1.0 to 3.85 in pre-S1Δ1-8 co-transfection, whereas those decreased from 1.0 to 0.88 in pre-S2Δ3-25 co-transfection. CONCLUSION: Pre-S mutations exhibit different phenotypes of genome replication and HBsAg expression according to their locations. Thus, qHBsAg level for diagnosis and prognostification in chronic HBV infection should be used more cautiously, considering emergences of pre-S deletion mutants.


Assuntos
Regulação Viral da Expressão Gênica/genética , Genoma Viral/genética , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/genética , Mutação , Precursores de Proteínas/genética , Replicação Viral/genética , Células Cultivadas , Antígenos de Superfície da Hepatite B/metabolismo , Humanos , Precursores de Proteínas/metabolismo
16.
J Virol ; 88(12): 6805-18, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696492

RESUMO

UNLABELLED: The emergence of drug-resistant hepatitis B virus (HBV) is a major problem for antiviral treatment in chronic hepatitis B infection. In this study, we analyzed the evolution of drug-resistant mutations and characterized the effects of the rtA181T and rtI233V mutations on viral replication and drug resistance. We performed a clonal analysis of the HBV polymerase gene from serum samples during viral breakthrough treated with antiviral agents. A series of mutant clones containing rtA181T and/or rtI233V mutations were constructed and determined the effect of these mutations on the replication ability and drug resistance. An in vitro study revealed that the effect of the rtA181T mutation on viral replication and drug resistance is dependent on the mutations in the overlapping surface gene. Compared to the rtA181T surface missense mutation (rtA181T/sW172S), the introduction of rtA181T surface nonsense mutation (rtA181T/sW172*) resulted in decreased viral replication and increased drug resistance. Complementation assay revealed that the truncated PreS1 is responsible for reduced replication of rtA181T/sW172* mutant. Moreover, the rtA181T/sW172* mutant exhibited a defect in viral particle secretion. The rtI233V mutation that emerged during adefovir therapy reduced viral replication and conferred resistance to adefovir. Our data suggest that the impact of the rtA181T mutation on replication and drug resistance differs based on the mutation status of the corresponding surface gene. The rtI233V mutation also affects replication ability and drug resistance. This observation suggests the need for genotypic analysis of overlapping surface genes to manage antiviral drug resistance if clinical isolates harbor the rtA181T mutation. IMPORTANCE: The emergence of drug-resistant HBV that are no longer susceptible to nucleos(t)ide analogues is a major problem for antiviral treatment in chronic hepatitis B infection. Among drug-resistant mutations, the single rtA181T mutation is known to confer cross-resistance to antiviral drugs. This mutation causes intermediate or reduced susceptibility to tenofovir. Moreover, the clinical occurrence of the rtA181T mutation during antiviral therapy is also high. Our study revealed that the effect of the rtA181T mutation on viral replication and drug resistance is dependent on the mutations in the overlapping surface gene. This observation suggests the need for genotypic analysis of overlapping surface genes to manage antiviral drug resistance if clinical isolates harbor the rtA181T mutation. We believe that our study will not only extend the understanding of the drug resistance mechanism, but it will also ultimately provide new treatment options for patients with multidrug resistant HBV.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/enzimologia , Hepatite B/virologia , DNA Polimerase Dirigida por RNA/genética , Proteínas Virais/genética , Replicação Viral , Regulação Viral da Expressão Gênica , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Humanos , Mutação de Sentido Incorreto , DNA Polimerase Dirigida por RNA/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
17.
Biochim Biophys Acta ; 1842(9): 1648-57, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24769044

RESUMO

Hepatocystin/80K-H is known as a causative gene for autosomal dominant polycystic liver disease. However, the role of hepatocystin in hepatitis B virus-related liver disease remains unknown. Here, we investigated the role of hepatocystin on the cytokine-mediated antiviral response against hepatitis B virus infection. We investigated the antiviral effect and mechanism of hepatocystin by ectopic expression and RNAi knockdown in cell culture and mouse livers. Hepatocystin suppressed the replication of hepatitis B virus both in vitro and in vivo. This inhibitory effect was HBx-independent and mediated by the transcriptional regulation of viral genome via the activation of exogenous signal-regulated kinase 1/2 and the reduced expression of hepatocyte nuclear factor 4α, a transcription factor essential for hepatitis B virus replication. The amino-terminal region of hepatocystin was essential for regulation of this antiviral signaling pathway. We also found that hepatocystin acts as a critical component in interferon-mediated mitogen-activated protein kinase signaling pathway, and the interferon-induced antiviral activity against hepatitis B virus is associated with the expression levels of hepatocystin. We demonstrated that hepatocystin plays a critical role in modulating the susceptibility of hepatitis B virus to interferon, suggesting that the modulation of hepatocystin expression is important for cytokine-mediated viral clearance during hepatitis B virus infection.


Assuntos
Antivirais/uso terapêutico , Carcinoma Hepatocelular/prevenção & controle , Regulação da Expressão Gênica , Glucosidases/metabolismo , Hepatite B/prevenção & controle , Fator 4 Nuclear de Hepatócito/metabolismo , Interferon gama/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Northern Blotting , Southern Blotting , Western Blotting , Proteínas de Ligação ao Cálcio , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/virologia , Células Cultivadas , Sinergismo Farmacológico , Glucosidases/genética , Hepatite B/imunologia , Hepatite B/virologia , Vírus da Hepatite B/patogenicidade , Humanos , Técnicas Imunoenzimáticas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/prevenção & controle , Neoplasias Hepáticas/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais , Replicação Viral
18.
Biochim Biophys Acta ; 1832(10): 1569-81, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23644164

RESUMO

Hepatitis B virus (HBV) X protein (HBx) is a key player in HBV replication as well as HBV-induced hepatocellular carcinoma (HCC). However, the pathogenesis of HBV infection and the mechanisms of host-virus interactions are still elusive. In this study, a combination of affinity purification and mass spectrometry was applied to identify the host factors interacting with HBx in hepatoma cells. Thirteen proteins were identified as HBx binding partners. Among them, we first focused on determining the functional significance of the interaction between HBx and hepatocystin. A physical interaction between HBx and hepatocystin was confirmed by co-immunoprecipitation and Western blotting. Immunocytochemistry demonstrated that HBx and hepatocystin colocalized in the hepatoma cells. Domain mapping of both proteins revealed that the HBx C-terminus (amino acids 110-154) was responsible for binding to the mannose 6-phosphate receptor homology domain (amino acids, 419-525) of hepatocystin. Using translation and proteasome inhibitors, we found that hepatocystin overexpression accelerated HBx degradation via a ubiquitin-independent proteasome pathway. We demonstrated that this effect was mediated by an interaction between both proteins using a HBx deletion mutant. Hepatocystin overexpression significantly inhibited HBV DNA replication and expression of HBs antigen concomitant with HBx degradation. Using the hepatocystin mutant constructs that bind HBx, we also confirmed that hepatocystin inhibited HBx-dependent HBV replication. In conclusion, we demonstrated for the first time that hepatocystin functions as a chaperon-like molecule by accelerating HBx degradation, and thereby inhibits HBV replication. Our results suggest that inducing hepatocystin may provide a novel therapeutic approach to control HBV infection.


Assuntos
Carcinoma Hepatocelular/metabolismo , Glucosidases/fisiologia , Vírus da Hepatite B/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neoplasias Hepáticas/metabolismo , Transativadores/metabolismo , Replicação Viral/fisiologia , Sequência de Aminoácidos , Proteínas de Ligação ao Cálcio , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Glucosidases/química , Glucosidases/metabolismo , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Espectrometria de Massas , Dados de Sequência Molecular , Ligação Proteica , Proteínas Virais Reguladoras e Acessórias
19.
Hepatology ; 58(2): 762-76, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23483589

RESUMO

UNLABELLED: Liver regeneration after liver damage caused by toxins and pathogens is critical for liver homeostasis. Retardation of liver proliferation was reported in hepatitis B virus (HBV) X protein (HBx)-transgenic mice. However, the underlying mechanism of the HBx-mediated disturbance of liver regeneration is unknown. We investigated the molecular mechanism of the inhibition of liver regeneration using liver cell lines and a mouse model. The mouse model of acute HBV infection was established by hydrodynamic injection of viral DNA. Liver regeneration after partial hepatectomy was significantly inhibited in the HBV DNA-treated mice. Mechanism studies have revealed that the expression of urokinase-type plasminogen activator (uPA), which regulates the activation of hepatocyte growth factor (HGF), was significantly decreased in the liver tissues of HBV or HBx-expressing mice. The down-regulation of uPA was further confirmed using liver cell lines transiently or stably transfected with HBx and the HBV genome. HBx suppressed uPA expression through the epigenetic regulation of the uPA promoter in mouse liver tissues and human liver cell lines. Expression of HBx strongly induced hypermethylation of the uPA promoter by recruiting DNA methyltransferase (DNMT) 3A2. CONCLUSION: Taken together, these results suggest that infection of HBV impairs liver regeneration through the epigenetic dysregulation of liver regeneration signals by HBx.


Assuntos
Epigênese Genética/fisiologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Hepatite B/fisiopatologia , Regeneração Hepática/fisiologia , Ativador de Plasminogênio Tipo Uroquinase/fisiologia , Animais , Linhagem Celular , Proliferação de Células , DNA (Citosina-5-)-Metiltransferases/fisiologia , DNA Metiltransferase 3A , DNA Viral/genética , Modelos Animais de Doenças , Hepatectomia , Hepatite B/patologia , Fator de Crescimento de Hepatócito/fisiologia , Hepatócitos/patologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Transdução de Sinais/fisiologia , Transativadores/fisiologia , Proteínas Virais Reguladoras e Acessórias
20.
PLoS One ; 8(3): e57331, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23483900

RESUMO

Sustained activation of NF-κB is one of the causative factors for various liver diseases, including liver inflammation and hepatocellular carcinoma (HCC). It has been known that activating the NF-κB signal by hepatitis B virus X protein (HBx) is implicated in the development of HCC. However, despite numerous studies on HBx-induced NF-κB activation, the detailed mechanisms still remain unsolved. Recently, p22-FLIP, a cleavage product of c-FLIPL, has been reported to induce NF-κB activation through interaction with the IκB kinase (IKK) complex in primary immune cells. Since our previous report on the interaction of HBx with c-FLIPL, we explored whether p22-FLIP is involved in the modulation of HBx function. First, we identified the expression of endogenous p22-FLIP in liver cells. NF-κB reporter assay and electrophoretic mobility shift assay (EMSA) revealed that the expression of p22-FLIP synergistically enhances HBx-induced NF-κB activation. Moreover, we found that HBx physically interacts with p22-FLIP and NEMO and potentially forms a ternary complex. Knock-down of c-FLIP leading to the downregulation of p22-FLIP showed that endogenous p22-FLIP is involved in HBx-induced NF-κB activation, and the formation of a ternary complex is necessary to activate NF-κB signaling. In conclusion, we showed a novel mechanism of HBx-induced NF-κB activation in which ternary complex formation is involved among HBx, p22-FLIP and NEMO. Our findings will extend the understanding of HBx-induced NF-κB activation and provide a new target for intervention in HBV-associated liver diseases and in the development of HCC.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Hepatócitos/metabolismo , Quinase I-kappa B/metabolismo , Fígado/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Vírus da Hepatite B/fisiologia , Hepatócitos/patologia , Humanos , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Proteínas Virais Reguladoras e Acessórias , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA