Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 46(4): 741-744, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577503

RESUMO

We demonstrate multi-cycle terahertz (MC-THz) generation in a 15.5 mm long periodically poled rubidium (Rb)-doped potassium titanyl phosphate (Rb:PPKTP) crystal with a poling period of 300 µm. By cryogenically cooling the crystal to 77 K, up to 0.72 µJ terahertz energy is obtained at a frequency of 0.5 THz with a 3 GHz bandwidth. A maximum internal optical-to-terahertz conversion efficiency of 0.16% is achieved, which is comparable with results achieved using periodically poled lithium niobate crystal. Neither photorefractive effects nor damage was observed with up to 900mJ/cm2, showing the great potential of Rb:PPKTP for multi-millijoule-level MC-THz generation.

2.
Opt Express ; 27(24): 34769-34787, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878660

RESUMO

High-energy narrowband terahertz (THz) pulses, relevant for a plethora of applications, can be created from the interference of two chirped-pulse drive lasers. The presence of third order dispersion, an intrinsic feature of many high-energy drive lasers, however, can significantly reduce the optical-to-THz conversion efficiency and have other undesired effects. Here, we present a detailed description of the effect of third-order dispersion (TOD) in the pump pulse on the generation of THz radiation via phase-matching of broadband highly chirped pulse trains. Although the analysis is general, we focus specifically on parameters typical to a Ti:Sapphire chirped-pulse amplification laser system for quasi-phase-matching in periodically-poled lithium niobate (PPLN) in the range of THz frequencies around 0.5 THz. Our analysis provides the tools to optimize the THz generation process for applications requiring high energy and to control it to produce desired THz waveforms in a variety of scenarios.

3.
Nat Commun ; 10(1): 2591, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197164

RESUMO

Highly-efficient optical generation of narrowband terahertz radiation enables unexplored technologies and sciences from compact electron acceleration to charge manipulation in solids. State-of-the-art conversion efficiencies are currently achieved using difference-frequency generation driven by temporal beating of chirped pulses but remain, however, far lower than desired or predicted. Here we show that high-order spectral phase fundamentally limits the efficiency of narrowband difference-frequency generation using chirped-pulse beating and resolve this limitation by introducing a novel technique based on tuning the relative spectral phase of the pulses. For optical terahertz generation, we demonstrate a 13-fold enhancement in conversion efficiency for 1%-bandwidth, 0.361 THz pulses, yielding a record energy of 0.6 mJ and exceeding previous optically-generated energies by over an order of magnitude. Our results prove the feasibility of millijoule-scale applications like terahertz-based electron accelerators and light sources and solve the long-standing problem of temporal irregularities in the pulse trains generated by interfering chirped pulses.

4.
Nat Commun ; 9(1): 2142, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849173

RESUMO

Reaction pathways of biochemical processes are influenced by the dissipative electrostatic interaction of the reagents with solvent water molecules. The simulation of these interactions requires a parametrization of the permanent and induced dipole moments. However, the underlying molecular polarizability of water and its dependence on ions are partially unknown. Here, we apply intense terahertz pulses to liquid water, whose oscillations match the timescale of orientational relaxation. Using a combination of terahertz pump / optical probe experiments, molecular dynamics simulations, and a Langevin dynamics model, we demonstrate a transient orientation of their dipole moments, not possible by optical excitation. The resulting birefringence reveals that the polarizability of water is lower along its dipole moment than the average value perpendicular to it. This anisotropy, also observed in heavy water and alcohols, increases with the concentration of sodium iodide dissolved in water. Our results enable a more accurate parametrization and a benchmarking of existing and future water models.

5.
Opt Lett ; 42(11): 2118-2121, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569860

RESUMO

We generate narrowband terahertz (THz) radiation in periodically poled lithium niobate (PPLN) crystals using two chirped-and-delayed driver pulses from a high-energy Ti:sapphire laser. The generated frequency is determined by the phase-matching condition in the PPLN and influences the temporal delay of the two pulses for efficient terahertz generation. We achieve internal conversion efficiencies up to 0.13% as well as a record multicycle THz energy of 40 µJ at 0.544 THz in a cryogenically cooled PPLN.

6.
Opt Express ; 23(23): 29729-37, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26698455

RESUMO

Optical rectification with tilted pulse fronts in lithium niobate crystals is one of the most promising methods to generate terahertz (THz) radiation. In order to achieve higher optical-to-THz energy efficiency, it is necessary to cryogenically cool the crystal not only to decrease the linear phonon absorption for the generated THz wave but also to lengthen the effective interaction length between infrared pump pulses and THz waves. However, the refractive index of lithium niobate crystal at lower temperature is not the same as that at room temperature, resulting in the necessity to re-optimize or even re-build the tilted pulse front setup. Here, we performed a temperature dependent measurement of refractive index and absorption coefficient on a 6.0 mol% MgO-doped congruent lithium niobate wafer by using a THz time-domain spectrometer (THz-TDS). When the crystal temperature was decreased from 300 K to 50 K, the refractive index of the crystal in the extraordinary polarization decreased from 5.05 to 4.88 at 0.4 THz, resulting in ~1° change for the tilt angle inside the lithium niobate crystal. The angle of incidence on the grating for the tilted pulse front setup at 1030 nm with demagnification factor of -0.5 needs to be changed by 3°. The absorption coefficient decreased by 60% at 0.4 THz. These results are crucial for designing an optimum tilted pulse front setup based on lithium niobate crystals.

7.
Opt Lett ; 39(18): 5403-6, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26466283

RESUMO

We experimentally investigate the limits of 800-nm-to-terahertz (THz) energy conversion in lithium niobate at room temperature driven by amplified Ti:sapphire laser pulses with tilted pulse front. The influence of the pump central wavelength, pulse duration, and fluence on THz generation is studied. We achieved a high peak efficiency of 0.12% using transform limited 150 fs pulses and observed saturation of the optical-to-THz conversion efficiency at a fluence of 15 mJ/cm(2) for this pulse duration. We experimentally identify two main limitations for the scaling of optical-to-THz conversion efficiencies: (i) the large spectral broadening of the optical pump spectrum in combination with large angular dispersion of the tilted pulse front and (ii) free-carrier absorption of THz radiation due to multi-photon absorption of the 800 nm radiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA