Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
EBioMedicine ; 106: 105236, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38996765

RESUMO

BACKGROUND: Variants in GABRB2, encoding the ß2 subunit of the γ-aminobutyric acid type A (GABAA) receptor, can result in a diverse range of conditions, ranging from febrile seizures to severe developmental and epileptic encephalopathies. However, the mechanisms underlying the risk of developing milder vs more severe forms of disorder remain unclear. In this study, we conducted a comprehensive genotype-phenotype correlation analysis in a cohort of individuals with GABRB2 variants. METHODS: Genetic and electroclinical data of 42 individuals harbouring 26 different GABRB2 variants were collected and accompanied by electrophysiological analysis of the effects of the variants on receptor function. FINDINGS: Electrophysiological assessments of α1ß2γ2 receptors revealed that 25/26 variants caused dysfunction to core receptor properties such as GABA sensitivity. Of these, 17 resulted in gain-of-function (GOF) while eight yielded loss-of-function traits (LOF). Genotype-phenotype correlation analysis revealed that individuals harbouring GOF variants suffered from severe developmental delay/intellectual disability (DD/ID, 74%), movement disorders such as dystonia or dyskinesia (59%), microcephaly (50%) and high risk of early mortality (26%). Conversely, LOF variants were associated with milder disease manifestations. Individuals with these variants typically exhibited fever-triggered seizures (92%), milder degrees of DD/ID (85%), and maintained ambulatory function (85%). Notably, severe movement disorders or microcephaly were not reported in individuals with loss-of-function variants. INTERPRETATION: The data reveals that genetic variants in GABRB2 can lead to both gain and loss-of-function, and this divergence is correlated with distinct disease manifestations. Utilising this information, we constructed a diagnostic flowchart that aids in predicting the pathogenicity of recently identified variants by considering clinical phenotypes. FUNDING: This work was funded by the Australian National Health & Medical Research Council, the Novo Nordisk Foundation and The Lundbeck Foundation.


Assuntos
Epilepsia , Estudos de Associação Genética , Fenótipo , Receptores de GABA-A , Humanos , Receptores de GABA-A/genética , Masculino , Feminino , Epilepsia/genética , Criança , Pré-Escolar , Mutação com Ganho de Função , Mutação com Perda de Função , Transtornos do Neurodesenvolvimento/genética , Predisposição Genética para Doença , Adolescente , Lactente , Adulto , Genótipo , Alelos
3.
Brain ; 147(1): 224-239, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37647766

RESUMO

Genetic variants associated with developmental and epileptic encephalopathies have been identified in the GABRB3 gene that encodes the ß3 subunit of GABAA receptors. Typically, variants alter receptor sensitivity to GABA resulting in either gain- or loss-of-function, which correlates with patient phenotypes. However, it is unclear how another important receptor property, desensitization, contributes to the greater clinical severity of gain-of-function variants. Desensitization properties of 20 gain-of-function GABRB3 variant receptors were evaluated using two-electrode voltage-clamp electrophysiology. The parameters measured included current decay rates and steady-state currents. Selected variants with increased or reduced desensitization were also evaluated using whole-cell electrophysiology in transfected mammalian cell lines. Of the 20 gain-of-function variants assessed, 13 were found to alter receptor desensitization properties. Seven variants reduced desensitization at equilibrium, which acts to worsen gain-of-function traits. Six variants accelerated current decay kinetics, which limits gain-of-function traits. All affected patients displayed severe clinical phenotypes with intellectual disability and difficult-to-treat epilepsy. Nevertheless, variants that reduced desensitization at equilibrium were associated with more severe clinical outcomes. This included younger age of first seizure onset (median 0.5 months), movement disorders (dystonia and dyskinesia), epilepsy of infancy with migrating focal seizures (EIMFS) and risk of early mortality. Variants that accelerated current decay kinetics were associated with slightly milder phenotypes with later seizure onset (median 4 months), unclassifiable developmental and epileptic encephalopathies or Lennox-Gastaut syndrome and no movement disorders. Our study reveals that gain-of-function GABRB3 variants can increase or decrease receptor desensitization properties and that there is a correlation with the degree of disease severity. Variants that reduced the desensitization at equilibrium were clustered in the transmembrane regions that constitute the channel pore and correlated with greater disease severity, while variants that accelerated current decay were clustered in the coupling loops responsible for receptor activation and correlated with lesser severity.


Assuntos
Epilepsia Generalizada , Epilepsia , Transtornos dos Movimentos , Animais , Humanos , Recém-Nascido , Mutação com Ganho de Função , Mutação/genética , Epilepsia/genética , Convulsões , Mamíferos/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
4.
J Neurochem ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37621067

RESUMO

Normal brain function requires a tightly regulated balance between excitatory and inhibitory neurotransmissions. γ-Aminobutyric acid type A (GABAA ) receptors represent the major class of inhibitory ion channels in the mammalian brain. Dysregulation of these receptors and/or their associated pathways is strongly implicated in the pathophysiology of epilepsy. To date, hundreds of different GABAA receptor subunit variants have been associated with epilepsy, making them a prominent cause of genetically linked epilepsy. While identifying these genetic variants is crucial for accurate diagnosis and effective genetic counselling, it does not necessarily lead to improved personalised treatment options. This is because the identification of a variant does not reveal how the function of GABAA receptors is affected. Genetic variants in GABAA receptor subunits can cause complex changes to receptor properties resulting in various degrees of gain-of-function, loss-of-function or a combination of both. Understanding how variants affect the function of GABAA receptors therefore represents an important first step in the ongoing development of precision therapies. Furthermore, it is important to ensure that functional data are produced using methodologies that allow genetic variants to be classified using clinical guidelines such as those developed by the American College of Medical Genetics and Genomics. This article will review the current knowledge in the field and provide recommendations for future functional analysis of genetic GABAA receptor variants.

5.
Ann Neurol ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606373

RESUMO

OBJECTIVE: Variants in GABRA1 have been associated with a broad epilepsy spectrum, ranging from genetic generalized epilepsies to developmental and epileptic encephalopathies. However, our understanding of what determines the phenotype severity and best treatment options remains inadequate. We therefore aimed to analyze the electroclinical features and the functional effects of GABRA1 variants to establish genotype-phenotype correlations. METHODS: Genetic and electroclinical data of 27 individuals (22 unrelated and 2 families) harboring 20 different GABRA1 variants were collected and accompanied by functional analysis of 19 variants. RESULTS: Individuals in this cohort could be assigned into different clinical subgroups based on the functional effect of their variant and its structural position within the GABRA1 subunit. A homogenous phenotype with mild cognitive impairment and infantile onset epilepsy (focal seizures, fever sensitivity, and electroencephalographic posterior epileptiform discharges) was described for variants in the extracellular domain and the small transmembrane loops. These variants displayed loss-of-function (LoF) effects, and the patients generally had a favorable outcome. A more severe phenotype was associated with variants in the pore-forming transmembrane helices. These variants displayed either gain-of-function (GoF) or LoF effects. GoF variants were associated with severe early onset neurodevelopmental disorders, including early infantile developmental and epileptic encephalopathy. INTERPRETATION: Our data expand the genetic and phenotypic spectrum of GABRA1 epilepsies and permit delineation of specific subphenotypes for LoF and GoF variants, through the heterogeneity of phenotypes and variants. Generally, variants in the transmembrane helices cause more severe phenotypes, in particular GoF variants. These findings establish the basis for a better understanding of the pathomechanism and a precision medicine approach in GABRA1-related disorders. Further studies in larger populations are needed to provide a conclusive genotype-phenotype correlation. ANN NEUROL 2023.

6.
Ann Clin Transl Neurol ; 10(8): 1493-1498, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37434477

RESUMO

Vinpocetine is a synthetic derivative of the alkaloid vincamine and has been used as a dietary supplement for decades. Following a positive report of the use of vinpocetine in a patient with a loss-of-function GABRB3 variant, we here describe another patient with a loss-of-function GABRA1 variant (p.(Arg112Gln)) who benefited from vinpocetine treatment. This patient was diagnosed with autism spectrum disorder, psychiatric complications, and therapy-resistant focal epilepsy. Upon add-on treatment with 40 mg vinpocetine daily for 16 months, the patient experienced an overall improved quality of life as well as seizure freedom. Our findings corroborate that vinpocetine can attenuate epilepsy-associated behavioral issues in patients with loss-of-function GABAA receptor gene variants.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Alcaloides de Vinca , Humanos , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Qualidade de Vida , Epilepsia/tratamento farmacológico , Epilepsia/genética , Alcaloides de Vinca/farmacologia , Alcaloides de Vinca/uso terapêutico , Receptores de GABA-A/genética
7.
Eur J Med Genet ; 65(10): 104577, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35918039

RESUMO

OBJECTIVE: Although the number of affected individuals is relatively low, pathogenic SCN3A variants have been reported in a range of phenotypes, from focal epilepsy to severe developmental and epileptic encephalopathy with polymicrogyria. METHODS: Case report and inclusion of current literature. RESULTS: Here, we report a normally developed boy with self-limiting generalized epilepsy with fever sensitivity due to a likely pathogenic SCN3A variant. He had febrile seizures from the age of one year, which were successfully treated with valproate. After tapering off medication, he only had rare breakthrough seizures, always associated with fever. At the age of 12 he continues to develop normally and have normal cognition. Reviewing the literature, there appears to be a correlation between functional outcome and phenotype. Gain of function SCN3A variants are seen in individuals with a severe epilepsy, cognitive impairment and brain malformations, while loss of function variants are seen in individuals with epilepsy, varying degrees of cognitive impairment, including normal cognition, but no brain malformations. SIGNIFICANCE: The genotype-phenotype correlations in SCN3A-related disorders presented here, will be important for families and clinicians alike, for diagnostic as well as possibly future treatment options.


Assuntos
Epilepsia Generalizada , Epilepsia , Epilepsia/genética , Epilepsia Generalizada/tratamento farmacológico , Epilepsia Generalizada/genética , Humanos , Masculino , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Fenótipo , Canais de Sódio/genética
9.
Nat Commun ; 13(1): 1822, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383156

RESUMO

Many patients with developmental and epileptic encephalopathies present with variants in genes coding for GABAA receptors. These variants are presumed to cause loss-of-function receptors leading to reduced neuronal GABAergic activity. Yet, patients with GABAA receptor variants have diverse clinical phenotypes and many are refractory to treatment despite the availability of drugs that enhance GABAergic activity. Here we show that 44 pathogenic GABRB3 missense variants segregate into gain-of-function and loss-of-function groups and respective patients display distinct clinical phenotypes. The gain-of-function cohort (n = 27 patients) presented with a younger age of seizure onset, higher risk of severe intellectual disability, focal seizures at onset, hypotonia, and lower likelihood of seizure freedom in response to treatment. Febrile seizures at onset are exclusive to the loss-of-function cohort (n = 47 patients). Overall, patients with GABRB3 variants that increase GABAergic activity have more severe developmental and epileptic encephalopathies. This paradoxical finding challenges our current understanding of the GABAergic system in epilepsy and how patients should be treated.


Assuntos
Epilepsia , Mutação com Ganho de Função , Mutação com Perda de Função , Receptores de GABA-A , Epilepsia/genética , Humanos , Fenótipo , Receptores de GABA-A/genética , Convulsões
10.
Genet Med ; 24(3): 681-693, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34906499

RESUMO

PURPOSE: Pathogenic variants in GABRB3 have been associated with a spectrum of phenotypes from severe developmental disorders and epileptic encephalopathies to milder epilepsy syndromes and mild intellectual disability (ID). In this study, we analyzed a large cohort of individuals with GABRB3 variants to deepen the phenotypic understanding and investigate genotype-phenotype correlations. METHODS: Through an international collaboration, we analyzed electro-clinical data of unpublished individuals with variants in GABRB3, and we reviewed previously published cases. All missense variants were mapped onto the 3-dimensional structure of the GABRB3 subunit, and clinical phenotypes associated with the different key structural domains were investigated. RESULTS: We characterized 71 individuals with GABRB3 variants, including 22 novel subjects, expressing a wide spectrum of phenotypes. Interestingly, phenotypes correlated with structural locations of the variants. Generalized epilepsy, with a median age at onset of 12 months, and mild-to-moderate ID were associated with variants in the extracellular domain. Focal epilepsy with earlier onset (median: age 4 months) and severe ID were associated with variants in both the pore-lining helical transmembrane domain and the extracellular domain. CONCLUSION: These genotype-phenotype correlations will aid the genetic counseling and treatment of individuals affected by GABRB3-related disorders. Future studies may reveal whether functional differences underlie the phenotypic differences.


Assuntos
Epilepsia , Deficiência Intelectual , Epilepsia/genética , Estudos de Associação Genética , Humanos , Deficiência Intelectual/genética , Mutação , Fenótipo , Receptores de GABA-A/genética
11.
Brain ; 145(4): 1299-1309, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34633442

RESUMO

A potential link between GABRD encoding the δ subunit of extrasynaptic GABAA receptors and neurodevelopmental disorders has largely been disregarded due to conflicting conclusions from early studies. However, we identified seven heterozygous missense GABRD variants in 10 patients with neurodevelopmental disorders and generalized epilepsy. One variant occurred in two sibs of healthy parents with presumed somatic mosaicism, another segregated with the disease in three affected family members, and the remaining five occurred de novo in sporadic patients. Electrophysiological measurements were used to determine the functional consequence of the seven missense δ subunit variants in receptor combinations of α1ß3δ and α4ß2δ GABAA receptors. This was accompanied by analysis of electroclinical phenotypes of the affected individuals. We determined that five of the seven variants caused altered function of the resulting α1ß3δ and α4ß2δ GABAA receptors. Surprisingly, four of the five variants led to gain-of-function effects, whereas one led to a loss-of-function effect. The stark differences between the gain-of-function and loss-of function effects were mirrored by the clinical phenotypes. Six patients with gain-of-function variants shared common phenotypes: neurodevelopmental disorders with behavioural issues, various degrees of intellectual disability, generalized epilepsy with atypical absences and generalized myoclonic and/or bilateral tonic-clonic seizures. The EEG showed qualitative analogies among the different gain-of-function variant carriers consisting of focal slowing in the occipital regions often preceding irregular generalized epileptiform discharges, with frontal predominance. In contrast, the one patient carrying a loss-of-function variant had normal intelligence and no seizure history, but has a diagnosis of autism spectrum disorder and suffers from elevated internalizing psychiatric symptoms. We hypothesize that increase in tonic GABA-evoked current levels mediated by δ-containing extrasynaptic GABAA receptors lead to abnormal neurotransmission, which represent a novel mechanism for severe neurodevelopmental disorders. In support of this, the electroclinical findings for the gain-of-function GABRD variants resemble the phenotypic spectrum reported in patients with missense SLC6A1 (GABA uptake transporter) variants. This also indicates that the phenomenon of extrasynaptic receptor overactivity is observed in a broader range of patients with neurodevelopmental disorders, because SLC6A1 loss-of-function variants also lead to overactive extrasynaptic δ-containing GABAA receptors. These findings have implications when selecting potential treatment options, as a substantial portion of available antiseizure medication act by enhancing GABAergic function either directly or indirectly, which could exacerbate symptoms in patients with gain-of-function GABRD variants.


Assuntos
Transtorno do Espectro Autista , Epilepsia Generalizada , Epilepsia , Proteínas da Membrana Plasmática de Transporte de GABA , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/genética , Epilepsia/genética , Epilepsia Generalizada/genética , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Mutação com Ganho de Função , Humanos , Transtornos do Neurodesenvolvimento/genética , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Convulsões/genética , Ácido gama-Aminobutírico/metabolismo
12.
Br J Pharmacol ; 178(7): 1556-1573, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33491192

RESUMO

BACKGROUND AND PURPOSE: GABAA receptors containing δ-subunits are notorious for being difficult to study in vitro due to heterogeneity of expressed receptor populations and low GABA-evoked current amplitudes. Thus, there are some published misconceptions and contradictory conclusions made regarding the pharmacology and stoichiometry of δ-containing receptors. The aim of this study was to obtain robust homogenous expression of α1ßδ receptors for in-depth investigation. EXPERIMENTAL APPROACH: Novel δ-containing pentameric concatenated constructs were designed. The resulting α1ß2δ and α1ß3δ GABAA receptor concatemers were investigated by two-electrode voltage-clamp electrophysiology using Xenopus laevis oocytes. KEY RESULTS: First, while homogenous α1ßδ GABAA receptor pools could not be obtained by manipulating the ratio of injected cRNAs of free α1, ß2/3, and δ subunits, concatenated pentameric α1ß2δ and α1ß3δ constructs resulted in robust expression levels of concatemers. Second, by using optimised constructs that give unidirectional assembly of concatemers, we found that the δ subunit cannot directly participate in GABA binding and receptor activation. Hence, functional δ-containing receptors are likely to all have a conventional 2α:2ß:1δ stoichiometry arranged as ßαßαδ when viewed counterclockwise from the extracellular side. Third, α1ß2/3δ receptors were found to express efficiently in X. laevis oocytes but have a low estimated open probability of ~0.5% upon GABA activation. Because of this, these receptors are uniquely susceptible to positive allosteric modulation by, for example, neurosteroids. CONCLUSION AND IMPLICATIONS: Our data answer important outstanding questions regarding the pharmacology and stoichiometry of α1δ-containing GABAA receptors and pave the way for future analysis and drug discovery efforts.


Assuntos
Receptores de GABA-A , Animais , Oócitos/metabolismo , Subunidades Proteicas/metabolismo , Receptores de GABA-A/genética , Xenopus laevis/metabolismo , Ácido gama-Aminobutírico
13.
Front Neurosci ; 14: 599812, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328871

RESUMO

γ-Aminobutyric-acid type A (GABA A ) receptors expressing the γ1 or γ3 subunit are only found within a few regions of the brain, some of which are involved in sleep. No known compounds have been reported to selectively target γ1- or γ3-containing GABA A receptors. Pharmacological assessments of this are conflicting, possibly due to differences in experimental models, conditions, and exact protocols when reporting efficacies and potencies. In this study, we evaluated the modulatory properties of five non-benzodiazepine Z-drugs (zaleplon, indiplon, eszopiclone, zolpidem, and alpidem) used in sleep management and the benzodiazepine, diazepam on human α1ß2γ receptors using all three γ subtypes. This was accomplished using concatenated GABA A pentamers expressed in Xenopus laevis oocytes and measured via two-electrode voltage clamp. This approach removes the potential for single subunits to form erroneous receptors that could contribute to the pharmacological assessment of these compounds. No compound tested had significant effects on γ1-containing receptors below 10 µM. Interestingly, zaleplon and indiplon were found to modulate γ3-containing receptors equally as efficacious as γ2-containing receptors. Furthermore, zaleplon had a higher potency for γ3- than for γ2-containing receptors, indicating certain therapeutic effects could occur via these γ3-containing receptors. Eszopiclone modulated γ3-containing receptors with reduced efficacy but no reduction in potency. These data demonstrate that the imidazopyridines zaleplon and indiplon are well suited to further investigate potential γ3 effects on sleep in vivo.

14.
Br J Pharmacol ; 177(18): 4275-4295, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32627170

RESUMO

BACKGROUND AND PURPOSE: Concatenation of Cys-loop receptor subunits is a commonly used technique to ensure experimental control of receptor assembly. However, we recently demonstrated that widely used constructs did not lead to the expression of uniform pools of ternary and more complex receptors. The aim was therefore to identify viable strategies for designing concatenated constructs that would allow strict control of resultant receptor pools. EXPERIMENTAL APPROACH: Concatenated dimeric, tetrameric, and pentameric α4ß2-containing nicotinic ACh (nACh) receptor constructs were designed with successively shorter linker lengths and expressed in Xenopus laevis oocytes. Resulting receptor stoichiometries were investigated by functional analysis in two-electrode voltage-clamp experiments. Molecular dynamics simulations were performed to investigate potential effects of linkers on the 3D structure of concatemers. KEY RESULTS: Dimeric constructs were found to be unreliable and should be avoided for expression of ternary receptors. By introducing two short linkers, we obtained efficient expression of uniform receptor pools with tetrameric and pentameric constructs. However, linkers should not be excessively short as that introduces strain on the 3D structure of concatemers. CONCLUSION AND IMPLICATIONS: The data demonstrate that design of concatenated Cys-loop receptors requires a compromise between the desire for control of assembly and avoiding introduction of strain on the resulting protein. The overall best strategy was found to be pentameric constructs with carefully optimised linker lengths. Our findings will advance studies of ternary or more complex Cys-loop receptors as well as enabling detailed analysis of how pharmacological agents interact with stoichiometry-specific binding sites.


Assuntos
Receptores Nicotínicos , Acetilcolina , Animais , Sítios de Ligação , Oócitos/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Xenopus laevis/metabolismo
15.
Molecules ; 25(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580406

RESUMO

Despite extensive efforts in the development of drugs for complex neurodegenerative diseases, treatment often remains challenging or ineffective, and hence new treatment strategies are necessary. One approach is the design of multi-target drugs, which can potentially address the complex nature of disorders such as Alzheimer's disease. We report a method for high throughput virtual screening aimed at identifying new dual target hit molecules. One of the identified hits, N,N-dimethyl-1-(4-(3-methyl-[1,2,4]triazolo[4,3-a]pyrimidin-6-yl)phenyl)ethan-1-amine (Ý;mir-2), has dual-activity as an acetylcholinesterase (AChE) inhibitor and as an α7 nicotinic acetylcholine receptor (α7 nAChR) agonist. Using computational chemistry methods, parallel and independent screening of a virtual compound library consisting of 3,848,234 drug-like and commercially available molecules from the ZINC15 database, resulted in an intersecting set of 57 compounds, that potentially possess activity at both of the two protein targets. Based on ligand efficiency as well as scaffold and molecular diversity, 16 of these compounds were purchased for in vitro validation by Ellman's method and two-electrode voltage-clamp electrophysiology. Ý;mir-2 was shown to exhibit the desired activity profile (AChE IC50 = 2.58 ± 0.96 µM; α7 nAChR activation = 7.0 ± 0.9% at 200 µM) making it the first reported compound with this particular profile and providing further evidence of the feasibility of in silico methods for the identification of novel multi-target hit molecules.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/isolamento & purificação , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Acetilcolinesterase/química , Acetilcolinesterase/ultraestrutura , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Inibidores da Colinesterase/química , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Conformação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade , Interface Usuário-Computador , Receptor Nicotínico de Acetilcolina alfa7/química , Receptor Nicotínico de Acetilcolina alfa7/ultraestrutura
16.
Biochem Pharmacol ; 174: 113786, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31887288

RESUMO

Neuronal nicotinic acetylcholine receptors (nAChRs) are crucial mediators of central presynaptic, postsynaptic, and extrasynaptic signaling, and they are implicated in a range of CNS disorders. The numerous nAChR subtypes are differentially expressed and mediate distinct functions throughout the CNS, and thus there is considerable interest in developing subtype-selective nAChR modulators, both for use as pharmacological tools and as putative therapeutics. α6ß2-containing (α6ß2*) nAChRs are highly expressed in and regulate the activity of midbrain dopaminergic neurons, which makes them attractive drug targets in several psychiatric and neurological diseases, including nicotine addiction and Parkinson's disease. This paper presents the preclinical characterization of AN317, a novel α6ß2* agonist exhibiting functional selectivity toward other nAChRs, including α4ß2, α3ß4 and α7 receptors. AN317 induced [3H]dopamine release from rat striatal synaptosomes and augmented dopaminergic neuron activity in substantia nigra pars compacta brain slices in Ca2+ imaging and electrophysiological assays. In line with this, AN317 alleviated the high-frequency tremors arising from reserpine-mediated dopamine depletion in rats. Finally, AN317 mediated significant protective effects on cultured rat mesencephalic neurons treated with the dopaminergic neurotoxin MPP+. AN317 displays good bioavailability and readily crosses the blood-brain barrier, which makes it a unique tool for both in vitro and in vivo studies of native α6ß2* receptors in the nigrostriatal system and other dopaminergic pathways. Altogether, these findings highlight the potential of selective α6ß2* nAChR activation as a treatment strategy for symptoms and possibly even deceleration of disease progression in neurodegenerative diseases such as Parkinson's disease.


Assuntos
Fármacos Neuroprotetores/farmacologia , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Masculino , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/embriologia , Camundongos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacocinética , Agonistas Nicotínicos/administração & dosagem , Agonistas Nicotínicos/química , Agonistas Nicotínicos/farmacocinética , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores Nicotínicos/genética , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Xenopus laevis
17.
Biochem Pharmacol ; 174: 113788, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31887290

RESUMO

α6ß2-Containing nicotinic acetylcholine receptors (α6ß2* nAChRs) are predominantly expressed in midbrain dopaminergic neurons, including substantia nigra pars compacta (SNc) neurons and their projections to striatal regions, where they regulate dopamine release and nigrostriatal activity. It is well established that nAChR agonists exert protection against dopaminergic neurotoxicity in cellular assays and parkinsonian animal models. Historically, drug development in the nAChR field has been mostly focused on development of selective agonists and positive allosteric modulators (PAMs) for the predominant neuronal nAChRs, α7 and α4ß2. Here, we report the discovery and characterization of AN6001, a novel selective α6ß2* nAChR PAM. AN6001 mediated increases in both nicotine potency and efficacy at the human α6/α3ß2ß3V9'S nAChR in HEK293 cells, and it positively modulated ACh-evoked currents through both α6/α3ß2ß3V9'S and a concatenated ß3-α6-ß2-α6-ß2 receptor in Xenopus oocytes, displaying EC50 values of 0.58 µM and 0.40 µM, respectively. In contrast, the compound did not display significant modulatory activity at α4ß2, α3ß4, α7 and muscle nAChRs. AN6001 also increased agonist-induced dopamine release from striatal synaptosomes and augmented agonist-induced global cellular responses and inward currents in dopaminergic neurons in SNc slices (measured by Ca2+ imaging and patch clamp recordings, respectively). Finally, AN6001 potentiated the neuroprotective effect of nicotine at MPP+-treated primary dopaminergic neurons. Overall, our studies demonstrate the existence of allosteric sites on α6ß2* nAChRs and that positive modulation of native α6ß2* receptors strengthens DA signaling. Hence, AN6001 represents an important tool for studies of α6ß2* nAChRs and furthermore underlines the therapeutic potential in these receptors in Parkinson's disease.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Dopamina/metabolismo , Fármacos Neuroprotetores/farmacologia , Receptores Nicotínicos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Células HEK293 , Humanos , Camundongos , Fármacos Neuroprotetores/química , Nicotina/farmacologia , Oócitos/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Ratos Wistar , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Xenopus laevis
18.
Brain Commun ; 2(2): fcaa162, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585817

RESUMO

Variants in the GABRB3 gene encoding the ß3-subunit of the γ-aminobutyric acid type A ( receptor are associated with various developmental and epileptic encephalopathies. Typically, these variants cause a loss-of-function molecular phenotype whereby γ-aminobutyric acid has reduced inhibitory effectiveness leading to seizures. Drugs that potentiate inhibitory GABAergic activity, such as nitrazepam, phenobarbital or vigabatrin, are expected to compensate for this and thereby reduce seizure frequency. However, vigabatrin, a drug that inhibits γ-aminobutyric acid transaminase to increase tonic γ-aminobutyric acid currents, has mixed success in treating seizures in patients with GABRB3 variants: some patients experience seizure cessation, but there is hypersensitivity in some patients associated with hypotonia, sedation and respiratory suppression. A GABRB3 variant that responds well to vigabatrin involves a truncation variant (p.Arg194*) resulting in a clear loss-of-function. We hypothesized that patients with a hypersensitive response to vigabatrin may exhibit a different γ-aminobutyric acid A receptor phenotype. To test this hypothesis, we evaluated the phenotype of de novo variants in GABRB3 (p.Glu77Lys and p.Thr287Ile) associated with patients who are clinically hypersensitive to vigabatrin. We introduced the GABRB3 p.Glu77Lys and p.Thr287Ile variants into a concatenated synaptic and extrasynaptic γ-aminobutyric acid A receptor construct, to resemble the γ-aminobutyric acid A receptor expression by a patient heterozygous for the GABRB3 variant. The mRNA of these constructs was injected into Xenopus oocytes and activation properties of each receptor measured by two-electrode voltage clamp electrophysiology. Results showed an atypical gain-of-function molecular phenotype in the GABRB3 p.Glu77Lys and p.Thr287Ile variants characterized by increased potency of γ-aminobutyric acid A without change to the estimated maximum open channel probability, deactivation kinetics or absolute currents. Modelling of the activation properties of the receptors indicated that either variant caused increased chloride flux in response to low concentrations of γ-aminobutyric acid that mediate tonic currents. We therefore propose that the hypersensitivity reaction to vigabatrin is a result of GABRB3 variants that exacerbate GABAergic tonic currents and caution is required when prescribing vigabatrin. In contrast, drug strategies increasing tonic currents in loss-of-function variants are likely to be a safe and effective therapy. This study demonstrates that functional genomics can explain beneficial and adverse anti-epileptic drug effects, and propose that vigabatrin should be considered in patients with clear loss-of-function GABRB3 variants.

19.
Front Neurosci ; 13: 1133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736685

RESUMO

Inflammatory processes are known to contribute to tissue damage in the central nervous system (CNS) across a broad range of neurological conditions, including stroke. Gamma amino butyric acid (GABA), the main inhibitory neurotransmitter in the CNS, has been implicated in modulating peripheral immune responses by acting on GABA A receptors on antigen-presenting cells and lymphocytes. Here, we investigated the effects and mechanism of action of the delta-selective compound, DS2, to improve stroke recovery and modulate inflammation. We report a decrease in nuclear factor (NF)-κB activation in innate immune cells over a concentration range in vitro. Following a photochemically induced motor cortex stroke, treatment with DS2 at 0.1 mg/kg from 1 h post-stroke significantly decreased circulating tumor necrosis factor (TNF)-α, interleukin (IL)-17, and IL-6 levels, reduced infarct size and improved motor function in mice. Free brain concentrations of DS2 were found to be lower than needed for robust modulation of central GABA A receptors and were not affected by the presence and absence of elacridar, an inhibitor of both P-glycoprotein and breast cancer resistance protein (BCRP). Finally, as DS2 appears to dampen peripheral immune activation and only shows limited brain exposure, we assessed the role of DS2 to promote functional recovery after stroke when administered from 3-days after the stroke. Treatment with DS2 from 3-days post-stroke improved motor function on the grid-walking, but not on the cylinder task. These data highlight the need to further develop subunit-selective compounds to better understand change in GABA receptor signaling pathways both centrally and peripherally. Importantly, we show that GABA compounds such as DS2 that only shows limited brain exposure can still afford significant protection and promote functional recovery most likely via modulation of peripheral immune cells and could be given as an adjunct treatment.

20.
J Gen Physiol ; 151(6): 798-819, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30988061

RESUMO

γ-aminobutyric acid type A receptors (GABAARs), the major inhibitory neurotransmitter receptors in the mammalian central nervous system, are arguably the most challenging member of the pentameric Cys-loop receptors to study due to their heteromeric structure. When two or more subunits are expressed together in heterologous systems, receptors of variable subunit type, ratio, and orientation can form, precluding accurate interpretation of data from functional studies. Subunit concatenation is a technique that involves the linking of individual subunits and in theory allows the precise control of the uniformity of expressed receptors. In reality, the resulting concatemers from widely used constructs are flexible in their orientation and may therefore assemble with themselves or free GABAAR subunits in unexpected ways. In this study, we examine functional responses of receptors from existing concatenated constructs and describe refinements necessary to allow expression of uniform receptor populations. We find that dimers from two commonly used concatenated constructs, ß-23-α and α-10-ß, assemble readily in both the clockwise and the counterclockwise orientations when coexpressed with free subunits. Furthermore, we show that concatemers formed from new tetrameric α-10-ß-α-ß and α-10-ß-α-γ constructs also assemble in both orientations with free subunits to give canonical αßγ receptors. To restrict linker flexibility, we systematically shorten linker lengths of dimeric and pentameric constructs and find optimized constructs that direct the assembly of GABAARs only in one orientation, thus eliminating the ambiguity associated with previously described concatemers. Based on our data, we revisit some noncanonical GABAAR configurations proposed in recent years and explain how the use of some concatenated constructs may have led to wrong conclusions. Our results help clarify current contradictions in the literature regarding GABAAR subunit stoichiometry and arrangement. The lessons learned from this study may guide future efforts in understanding other related heteromeric receptors.


Assuntos
Receptores de GABA/metabolismo , Animais , Feminino , Expressão Gênica/fisiologia , Humanos , Subunidades Proteicas/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA