Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; : 1-9, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37937534

RESUMO

The current study intended to analyze the impact of ethanol and lactic acid on the bacterial cellulose yield as well as physicochemical and mechanical properties, by using Gluconacetobacter kombuchae. The optimization of ethanol and lactic acid concentration has been done by using one-way ANOVA. Both the supplements significantly enhance the yield of bacterial cellulose (BC) as compared to the standard Hestrin-Schramm medium (control). Optimization leads to significant increase in BC yield as compared to the control, i.e., the addition, of optimized concentration of lactic acid (0.6%) increases the yield from (0.78 ± 0.026) g to (4.89 ± 0.020) g dry weight, and optimized concentration of ethanol (1%) increases the yield from (0.73 ± 0.057) g to (3.7 ± 0.01) g dry weight. Various physicochemical and mechanical properties of BC films produced in different media (i.e., HS, HS + Ethanol, and HS + Lactic acid), such as the crystallinity, structure, tensile strength, strain at break, Young's modulus, and water holding capacity, were also examined, by employing various techniques such as SEM, FTIR, XRD, etc. BC produced in medium supplemented with the optimum concentration of both the additives were found to possesses higher porosity. Though, slight decline in crystallinity was observed. But the tensile strength and strain at break, were upgraded 1.5-2.5 times, 2-2.5 times, respectively. This article attempted to present a method for enhancing BC yields and characteristics that may lead to more widespread and cost-effective use of this biopolymer.

2.
Int J Biol Macromol ; 246: 125625, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392906

RESUMO

The major objective of present work was to fabricate poly(hydroxybutyrate) based luminescent films for genuine food packaging applications. These films were synthesized by incorporating varying Chromone (CH) concentrations (5, 10, 15, 20, and 25 wt%) into poly(hydroxybutyrate) (PHB) matrix through solvent-casting. Different characteristics of prepared films were examined using Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), Mechanical testing, and Time-resolved photoluminescence (TRPL). UV-blocking properties and water vapor permeation were also examined. FTIR spectra indicated the occurrence of hydrogen bonding between PHB and CH. Among all prepared film samples, PHB/CH15 showed maximum tensile strength (22.5 MPa) with enhanced barrier ability against water vapor and UV rays, thermal stability, and luminescent performance. After overall analysis, PHB/CH15 film was selected to investigate its X-ray diffraction, release behavior, DPPH scavenging, and antimicrobial potential. Release kinetics revealed that the cumulative release percentage of CH was higher in fatty acid stimulant. Moreover, results suggested that this film demonstrated antioxidant activity (>55 %) and superior antimicrobial potential against Aspergillus niger, Staphylococcus aureus, and Escherichia coli. Furthermore, packaging of bread samples using PHB/CH15 film demonstrated the complete inhibition of microbial growth in bread up to 10 days of storage and ensure the safety of genuine food products.


Assuntos
Anti-Infecciosos , Embalagem de Alimentos , Embalagem de Alimentos/métodos , Vapor , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Hidroxibutiratos , Antioxidantes/farmacologia , Antioxidantes/química
3.
Int J Biol Macromol ; 233: 123512, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739047

RESUMO

The objective of current study was to develop Poly(hydroxybutyrate) (PHB) based active packaging film with long lasting antimicrobial potential in food-packaging applications. For developing such films, PHB was incorporated with poly(ethylene glycol) (PEG) as a plasticizer, nano-silica (n-Si) as strengthening material and clove essential oil (CEO) as an antimicrobial agent. These solvent-casted films with varying concentration of n-Si (0.5, 1, 1.5, 2 %) and 30 % CEO of total polymer matrix weight i.e., PHB/PEG (90/10) were prepared and studied on the basis of morphological, mechanical, thermal, degradation and antimicrobial behaviours. The presence of CEO and n-Si was confirmed by Fourier transform infrared spectroscopy (FTIR). Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) were used to investigate homogeneous dispersal of n-Si in polymer matrix. PHB/PEG/CEO/Si 1.0 film was selected as optimized one after mechanical testing and therefore further carried for antimicrobial testing. This selected film extended the shelf-life of brown bread up to 10 days comparable to bread wrapped in polyethylene. This revealed that PHB/PEG/CEO/Si 1.0 exhibited superior antibacterial activity against the food borne microbes i.e., Escherichia coli, Staphylococcus aureus and Aspergillus niger. Our findings indicate that this film improved the shelf-life of packaged bread and has promising features for active food packaging.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Syzygium , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleo de Cravo/farmacologia , Syzygium/química , Pão , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Polímeros , Embalagem de Alimentos/métodos , Hidroxibutiratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA