Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 202(24)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32989088

RESUMO

Azotobacter vinelandii produces the linear exopolysaccharide alginate, a compound of significant biotechnological importance. The biosynthesis of alginate in A. vinelandii and Pseudomonas aeruginosa has several similarities but is regulated somewhat differently in the two microbes. Here, we show that the second messenger cyclic dimeric GMP (c-di-GMP) regulates the production and the molecular mass of alginate in A. vinelandii The hybrid protein MucG, containing conserved GGDEF and EAL domains and N-terminal HAMP and PAS domains, behaved as a c-di-GMP phosphodiesterase (PDE). This activity was found to negatively affect the amount and molecular mass of the polysaccharide formed. On the other hand, among the diguanylate cyclases (DGCs) present in A. vinelandii, AvGReg, a globin-coupled sensor (GCS) DGC that directly binds to oxygen, was identified as the main c-di-GMP-synthesizing contributor to alginate production. Overproduction of AvGReg in the parental strain phenocopied a ΔmucG strain with regard to alginate production and the molecular mass of the polymer. MucG was previously shown to prevent the synthesis of high-molecular-mass alginates in response to reduced oxygen transfer rates (OTRs). In this work, we show that cultures exposed to reduced OTRs accumulated higher levels of c-di-GMP; this finding strongly suggests that at least one of the molecular mechanisms involved in modulation of alginate production and molecular mass by oxygen depends on a c-di-GMP signaling module that includes the PAS domain-containing PDE MucG and the GCS DGC AvGReg.IMPORTANCE c-di-GMP has been widely recognized for its essential role in the production of exopolysaccharides in bacteria, such as alginate produced by Pseudomonas and Azotobacter spp. This study reveals that the levels of c-di-GMP also affect the physical properties of alginate, favoring the production of high-molecular-mass alginates in response to lower OTRs. This finding opens up new alternatives for the design of tailor-made alginates for biotechnological applications.


Assuntos
Alginatos/metabolismo , Azotobacter vinelandii/metabolismo , GMP Cíclico/análogos & derivados , Polissacarídeos Bacterianos/biossíntese , Alginatos/química , Azotobacter vinelandii/enzimologia , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Peso Molecular , Oxigênio/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Polissacarídeos Bacterianos/química
2.
J Bacteriol ; 202(24)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32989089

RESUMO

The genus Azotobacter, belonging to the Pseudomonadaceae family, is characterized by the formation of cysts, which are metabolically dormant cells produced under adverse conditions and able to resist desiccation. Although this developmental process has served as a model for the study of cell differentiation in Gram-negative bacteria, the molecular basis of its regulation is still poorly understood. Here, we report that the ubiquitous second messenger cyclic dimeric GMP (c-di-GMP) is critical for the formation of cysts in Azotobacter vinelandii Upon encystment induction, the levels of c-di-GMP increased, reaching a peak within the first 6 h. In the absence of the diguanylate cyclase MucR, however, the levels of this second messenger remained low throughout the developmental process. A. vinelandii cysts are surrounded by two alginate layers with variable proportions of guluronic residues, which are introduced into the final alginate chain by extracellular mannuronic C-5 epimerases of the AlgE1 to AlgE7 family. Unlike in Pseudomonas aeruginosa, MucR was not required for alginate polymerization in A. vinelandii Conversely, MucR was necessary for the expression of extracellular alginate C-5 epimerases; therefore, the MucR-deficient strain produced cyst-like structures devoid of the alginate capsule and unable to resist desiccation. Expression of mucR was partially dependent on the response regulator AlgR, which binds to two sites in the mucR promoter, enhancing mucR transcription. Together, these results indicate that the developmental process of A. vinelandii is controlled through a signaling module that involves activation by the response regulator AlgR and c-di-GMP accumulation that depends on MucR.IMPORTANCEA. vinelandii has served as an experimental model for the study of the differentiation processes to form metabolically dormant cells in Gram-negative bacteria. This work identifies c-di-GMP as a critical regulator for the production of alginates with specific contents of guluronic residues that are able to structure the rigid laminated layers of the cyst envelope. Although allosteric activation of the alginate polymerase complex Alg8-Alg44 by c-di-GMP has long been recognized, our results show a previously unidentified role during the polymer modification step, controlling the expression of extracellular alginate epimerases. Our results also highlight the importance of c-di-GMP in the control of the physical properties of alginate, which ultimately determine the desiccation resistance of the differentiated cell.


Assuntos
Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/metabolismo , Carboidratos Epimerases/metabolismo , GMP Cíclico/análogos & derivados , Alginatos/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/crescimento & desenvolvimento , Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/genética , Carboidratos Epimerases/genética , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
3.
Biotechnol Rep (Amst) ; 26: e00436, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32140445

RESUMO

Alginates are polysaccharides that are of interest in various industrial applications. This is due to the viscosifying properties of alginates, which depends on the weight-average molecular weight. The aim of the present study was to evaluate the changes in alginate quality, in terms of the viscosifying power and weight-average molecular weight of the polymer produced by Azotobacter vinelandii mutant strains in shake flasks under microaerophilic conditions. In cultures developed at oxygen transfer rate (OTR) values close to 5 mmol L-1 h-1, the highest viscosifying power (1.75 L g-1) and weight-average molecular weight (3112 ±â€¯150 kDa) were achieved in cultures performed with the AT9 strain. These values were higher than those obtained for the alginates produced by the parental strain ATCC 9046 grown under similar OTR conditions. In contrast, the alginate produced by the GG9 and OPAlgU + exhibited a very low weight-average molecular weight and therefore a poor viscosifying power. Our results have shown that by the cultivation of AT9 strain under microaerophilic conditions it is possible to obtain a polymer having a high weight-average molecular weight and excellent viscosifying capacity. Therefore, it could be a viable strategy for producing alginates for industrial applications.

4.
Microbiology (Reading) ; 163(7): 1105-1115, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28699871

RESUMO

Azotobacter vinelandii, belonging to the Pseudomonadaceae family, is a free-living bacterium that has been considered to be a good source for the production of bacterial polymers such as alginate. In A. vinelandii the synthesis of this polymer is regulated by the Gac/Rsm post-transcriptional regulatory system, in which the RsmA protein binds to the mRNA of the biosynthetic algD gene, inhibiting translation. In several Pseudomonas spp. the two-component system CbrA/CbrB has been described to control a variety of metabolic and behavioural traits needed for adaptation to changing environmental conditions. In this work, we show that the A. vinelandii CbrA/CbrB two-component system negatively affects alginate synthesis, a function that has not been described in Pseudomonas aeruginosa or any other Pseudomonas species. CbrA/CbrB was found to control the expression of some alginate biosynthetic genes, mainly algD translation. In agreement with this result, the CbrA/CbrB system was necessary for optimal rsmA expression levels. CbrA/CbrB was also required for maximum accumulation of the sigma factor RpoS. This last effect could explain the positive effect of CbrA/CbrB on rsmA expression, as we also showed that one of the promoters driving rsmA transcription was RpoS-dependent. However, although inactivation of rpoS increased alginate production by almost 100 %, a cbrA mutation increased the synthesis of this polymer by up to 500 %, implying the existence of additional CbrA/CbrB regulatory pathways for the control of alginate production. The control exerted by CbrA/CbrB on the expression of the RsmA protein indicates the central role of this system in regulating carbon metabolism in A. vinelandii.


Assuntos
Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/metabolismo , Flavoproteínas/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo , Alginatos , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Flavoproteínas/genética , Ácido Glucurônico/biossíntese , Ácidos Hexurônicos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA