Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Build Simul ; 16(5): 667-682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101942

RESUMO

The present study develops a cost-effectiveness assessment model to analyze the performance of major operational parameters of central HVAC systems in terms of airborne transmission risk, energy consumption, and medical and social cost. A typical multi-zone building model with a central HVAC system is built numerically, and the effect of outdoor air (OA) ratio (from 30% to 100%) and filtration level (MERV 13, MERV 16, and HEPA) are assessed under the conditions of five climate zones in China. Compared with the baseline case with 30% OA and MERV 13 filtration, the airborne transmission risk in zones without infector is negligibly reduced with the increase in OA ratio and the upgrade of filtration level, owing to their slight modification on the equivalent ventilation rate of virus-free air. However, depending on climate zone, a 10% increase in OA ratio results in 12.5%-78.6% and 0.1%-8.6% increase in heating and cooling energy consumption, respectively, while an upgrade of filtration level to MERV 16 and HEPA results in an increase of 0.08%-0.2% and 1.4%-2.6%, respectively. Overall, when compared to the use of 100% OA ratio and HEPA filtration, the application of 30% or 40% OA ratio and MERV 13 filtration would save annually an energy and facility related cost of $29.4 billion in China, though giving an increase of approximately $0.1 billion on medical and social cost from the increased number of confirmed cases. This study provides basic method and information for the formulation of cost-effective operational strategies of HVAC systems coping with the airborne transmission, especially in resource-limited regions.

2.
Indoor Built Environ ; 31(5): 1176-1192, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35645609

RESUMO

Heating, Ventilation, and Air-Conditioning (HVAC) system that is almost indispensable service system of modern buildings is recognized as the most important engineering control measure against pandemics. However, the effectiveness of HVAC systems has been questioned on their ability to control airborne transmission. After the outbreak of COVID-19, China has controlled the spread within a relatively short period. Considering the large population, high population density, busy transportation and the overall underdeveloped economy, China's control measures may have some implications to other countries, especially those with limited resources. This paper intends to provide a systematic summary of Chinese ventilation guidelines issued to cope with COVID-19 transmission. The following three aspects are the main focus of these guidelines: (1) general operation and management schemes of various types of HVAC systems, (2) operation and management schemes of HVAC system in typical types of buildings, and (3) design schemes of HVAC system of makeshift hospitals. In addition, some important differences in HVAC guidelines between China and other countries/institutions are identified and compared, and the possible reasons are discussed. Further discussions are made on the following topics, including the required fresh air supply, the extended operation time, the use of auxiliary equipment, the limited capacity of existing systems, and the use of personalized systems.

3.
Build Environ ; 188: 107506, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33311839

RESUMO

Reducing airborne infectious risk is crucial for controlling infectious respiratory diseases (e.g., COVID-19). The airborne transmissibility of COVID-19 is high so that the common ventilation rate may be insufficient to dilute the airborne pathogens, particularly in public buildings with a relatively large occupancy density. Reducing occupancy can reduce the pathogen load thereby reducing airborne infection risk. However, reduced occupancy deteriorates work productivity due to the lost hours of work. This study proposes an occupancy-aided ventilation strategy for constraining the airborne infection risk and minimizing the loss of work productivity. Firstly, two mechanisms of occupancy schedule (alternative changeovers between normal occupancy and reduced occupancy) for reducing the airborne infection risk and loss of work productivity are revealed based on analyzing features of the indoor concentration profile of exhaled aerosols. Secondly, optimization of the occupancy schedule is developed to maximize the total time length of normal occupancy for the minimum loss in work productivity while satisfying the constraint on airborne infection risk (e.g., with the reproduction number less than one). The airborne infection risk is evaluated with the rebreathed fraction model. Case studies on COVID-19 in a classroom demonstrate that the proposed occupancy-aided ventilation is effective with an earning ratio of 1.67 (the ratio of the improvement in health outcome to the loss in work productivity) and is robust to the variable occupancy loads and occupancy flexibilities.

5.
Indoor Air ; 29(6): 993-1004, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31315146

RESUMO

This study examined the characteristics of the exhaled airflow pattern and breathing cycle period of human subjects and evaluated the influence of pulmonary ventilation rate and breathing cycle period on the risk of cross-infection. Measurements with five human subjects and a breathing thermal manikin were performed, and the peak exhaled airflow velocity from the mouth and the breathing cycle period were measured. Experiments on cross-infection between two breathing thermal manikins were then conducted in a full-scale test room, in which the pulmonary ventilation rate and breathing cycle period were varied systematically. Both peak flow velocity and breathing cycle length varied considerably between different subjects. The breathing cycle period in a standing posture was 18.9% lower than in a sitting posture. The influence of pulmonary ventilation rate and breathing cycle period extended up to a separation distance of 1.0 m between the two manikins. Increasing the pulmonary ventilation rate of the exposed person greatly increased the risk of cross-infection. Decreasing the breathing cycle period from the widely used "6 second" value led to a considerable increase in the risk of cross-infection. Standing posture resulted in a higher risk of cross-infection than sitting posture.


Assuntos
Infecção Hospitalar/transmissão , Ventilação Pulmonar , Respiração , Adulto , Idoso , Expiração , Feminino , Humanos , Masculino , Manequins , Pessoa de Meia-Idade , Boca , Postura , Fatores de Risco
6.
Indoor Air ; 29(4): 563-576, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30980555

RESUMO

This study experimentally examines and compares the dynamics and short-term events of airborne cross-infection in a full-scale room ventilated by stratum, mixing and displacement air distributions. Two breathing thermal manikins were employed to simulate a standing infected person and a standing exposed person. Four influential factors were examined, including separation distance between manikins, air change per hour, positioning of the two manikinsand air distribution. Tracer gas technique was used to simulate the exhaled droplet nuclei from the infected person and fast tracer gas concentration meters (FCM41) were used to monitor the concentrations. Real-time and average exposure indices were proposed to evaluate the dynamics of airborne exposure. The time-averaged exposure index depends on the duration of exposure time and can be considerably different during short-term events and under steady-state conditions. The exposure risk during short-term events may not always decrease with increasing separation distance. It changes over time and may not always increase with time. These findings imply that the control measures formulated on the basis of steady-state conditions are not necessarily appropriate for short-term events.


Assuntos
Microbiologia do Ar , Movimentos do Ar , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Viroses/transmissão , Infecção Hospitalar/transmissão , Expiração/fisiologia , Humanos , Manequins
7.
Build Simul ; 11(6): 1245-1253, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32218905

RESUMO

This study examines the influence of building envelope features on interunit dispersion around multi-story buildings, when the presence of an upstream interfering building is also considered. Validated CFD methods in the steady-state RANS framework are employed. In general, the reentry ratios of pollutant from a source unit to adjacent units are mostly in the order of 0.1%, but there are still many cases being in the order of 1%. The influence of envelope features is dependent strongly on the interaction between local wind direction and envelope feature. In a downward dominated near-facade flow field, the presence of vertical envelope features forms dispersion channels to intensify the unidirectional spread. Horizontal envelope features help induce the dilution of pollutant to the main stream and weakens largely the vertical interunit dispersion. The large influences caused by the presence of envelope features extend the existing understanding of interunit dispersion based on flat-facade buildings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA