Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Front Psychol ; 15: 1375294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515973

RESUMO

Objective: College students are currently grappling with severe mental health challenges, and research on artificial intelligence (AI) related to college students mental health, as a crucial catalyst for promoting psychological well-being, is rapidly advancing. Employing bibliometric methods, this study aim to analyze and discuss the research on AI in college student mental health. Methods: Publications pertaining to AI and college student mental health were retrieved from the Web of Science core database. The distribution of publications were analyzed to gage the predominant productivity. Data on countries, authors, journal, and keywords were analyzed using VOSViewer, exploring collaboration patterns, disciplinary composition, research hotspots and trends. Results: Spanning 2003 to 2023, the study encompassed 1722 publications, revealing notable insights: (1) a gradual rise in annual publications, reaching its zenith in 2022; (2) Journal of Affective Disorders and Psychiatry Research emerged were the most productive and influential sources in this field, with significant contributions from China, the United States, and their affiliated higher education institutions; (3) the primary mental health issues were depression and anxiety, with machine learning and AI having the widest range of applications; (4) an imperative for enhanced international and interdisciplinary collaboration; (5) research hotspots exploring factors influencing college student mental health and AI applications. Conclusion: This study provides a succinct yet comprehensive overview of this field, facilitating a nuanced understanding of prospective applications of AI in college student mental health. Professionals can leverage this research to discern the advantages, risks, and potential impacts of AI in this critical field.

2.
BMC Complement Med Ther ; 23(1): 263, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488573

RESUMO

BACKGROUND: The purpose of this study was to demonstrate the in vitro anti-nephritis activity of Rostellularia procumbens (L.) Nees (R. procumbens) extract and to make a preliminary investigation of its anti-nephritis mechanism. METHODS: A prediction network was built that describes the relationship between R. procumbens and CGN. Then, the potential targets for R. procumbens against CGN were imported into the DAVID database for Gene Ontology (GO) biological annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. A lipopolysaccharide (LPS)-stimulated rat mesangial cell HBZY-1 model in vitro was used to examine the anti-inflammatory activity of R. procumbens extract. RNA-seq was utilized to investigate differentially expressed genes (DEGs) and enriched signaling pathways between groups. Finally, qPCR was used for the validation analysis of the experimental results. RESULTS: The results of network pharmacology showed that R. procumbens exerts its therapeutic effect on CGN through the AGE-RAGE signaling pathway in diabetic complications, PI3K-Akt, IL-17 signaling pathway, and so on. R. procumbens n-butanol extract (J-NE) can effectively relieve inflammation in HBZY-1. The results of KEGG pathway enrichment suggest that J-NE attenuated CGN was associated with the IL-17 signaling pathway, and the results of RNA-seq were consistent with network pharmacology. Targets enriched in the IL-17 signaling pathway, including Chemokine (C-C motif) ligand 7 (CCL7), Lipocalin 2 (LCN2), Chemokine (C-C motif) ligand 2 (CCL2), and Chemokine (C-X-C motif) ligand 1 (CXCL1), have been identified as crucial targets attenuating CGN by J-NE. CONCLUSION: R. procumbens is a promising pharmacological candidate for the treatment of CGN in the present era.


Assuntos
Glomerulonefrite , Nefrite , Animais , Ratos , Interleucina-17 , Farmacologia em Rede , RNA-Seq , Fosfatidilinositol 3-Quinases , Doença Crônica , Extratos Vegetais/farmacologia
3.
Front Neurosci ; 17: 1188341, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250392

RESUMO

Background: Depression is a serious psychological disorder that college students are experiencing. College students' depression problems, which can be caused by various factors, have been easily ignored and untreated. In recent years, exercise, as a low-cost and easily accessible method for treating depression, has attracted widespread attention. The purpose of this study is to use bibliometrics to explore the hotspots and trends in the field of exercise therapy of college students in depression from 2002 to 2022. Methods: We retrieved relevant literature from the Web of Science (WoS), PubMed, and Scopus databases, and generated a ranking table to describe the core productivity in the field. We used VOSViewer software to generate network maps of authors, countries, co-cited journals, and co-occurring keywords to help us better understand the scientific collaboration patterns, potential disciplinary foundations, as well as research hotspots and trends in this field. Results: From 2002 to 2022, a total of 1,397 articles related to exercise therapy of college students in depression were selected. The key findings of this study are as follows: (1) the number of publications has gradually increased, especially after 2019; (2) United States and its affiliated higher education institutions have made significant contributions to the development of this field; (3) there are multiple research groups in this field, but their connections are relatively limited; (4) the field is relatively interdisciplinary, primarily a convergence of behavioral science, public health, and psychology; (5) based on co-occurring keyword analysis, six main themes were summarized: health-promoting factors, body image, negative behaviors, increased stress, depression coping strategies, and diet. Conclusion: Our study illustrates the research hotspots and trends for the research of exercise therapy of college students in depression, presents some challenges and new insights, and provides valuable information for further research.

4.
Phytomedicine ; 113: 154736, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36907143

RESUMO

BACKGROUND: Rostellularia procumbens (L) Nees. is an effective traditional Chinese herbal medicine for the treatment of patients with chronic glomerulonephritis (CGN) in the clinic. However, the underlying molecular mechanisms need further elucidation. PURPOSE: This study aims to investigate the renoprotective mechanisms of n-butanol extract from Rostellularia procumbens (L) Nees. (J-NE) in vivo and in vitro. METHODS: The components of J-NE were analyzed by UPLC-MS/MS. In vivo, the nephropathy model was induced in mice by tail vein injection with adriamycin (10 mg·kg-1), and mice were treated with vehicle or J-NE or benazepril by daily gavage. In vitro, MPC5 cells exposed to adriamycin (0.3 µg/ml) were treated with J-NE. The effects of J-NE inhibit podocyte apoptosis and protect against adriamycin-induced nephropathy were determined by Network pharmacology, RNA-seq, qPCR, ELISA, immunoblotting, flow cytometry, and TUNEL assay, according to the experimental protocols. RESULT: The results showed that treatment significantly improved ADR-induced renal pathological changes, and the therapeutic mechanism of J-NE was related to the inhibition of podocyte apoptosis. Further molecular mechanism studies found that J-NE inhibited inflammation, increase the proteins expression levels of Nephrin and Podocin, reduce TRPC6 and Desmin expression levels and calcium ion levels in podocytes, and decrease the proteins expression levels of PI3K, p-PI3K, Akt and p-Akt to attenuated apoptosis. Furthermore, 38 compounds of J-NE were identified. CONCLUSION: J-NE exerted the renoprotective effects by inhibiting podocyte apoptosis, which provides effective evidence for the treatment of J-NE targeting renal injury in CGN.


Assuntos
Doxorrubicina , Nefropatias , Camundongos , Animais , Doxorrubicina/farmacologia , Proteínas Proto-Oncogênicas c-akt , Cromatografia Líquida , Espectrometria de Massas em Tandem , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Fosfatidilinositol 3-Quinases
5.
Front Neurosci ; 17: 1289019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249586

RESUMO

Objective: With its high prevalence, depression's pathogenesis remains unclear. Recent attention has turned to the interplay between depression and epigenetic modifications. However, quantitative bibliometric analyses are lacking. This study aims to visually analyze depression epigenetics trends, utilizing bibliometric tools, while comprehensively reviewing its epigenetic mechanisms. Methods: Utilizing the Web of Science core dataset, we collected depression and epigenetics-related studies. Employing VOSViewer software, we visualized data on authors, countries, journals, and keywords. A ranking table highlighted field leaders. Results: Analysis encompassed 3,469 depression epigenetics studies published from January 2002 to June 2023. Key findings include: (1) Gradual publication growth, peaking in 2021; (2) The United States and its research institutions leading contributions; (3) Need for enhanced collaborations, spanning international and interdisciplinary efforts; (4) Keyword clustering revealed five main themes-early-life stress, microRNA, genetics, DNA methylation, and histone acetylation-highlighting research hotspots; (5) Limited focus on adolescent depression epigenetics, warranting increased attention. Conclusion: Taken together, this study revealed trends and hotspots in depression epigenetics research, underscoring global collaboration, interdisciplinary fusion, and multi-omics data's importance. It discussed in detail the potential of epigenetic mechanisms in depression diagnosis and treatment, advocating increased focus on adolescent research in this field. Insights aid researchers in shaping their investigative paths toward understanding depression's epigenetic mechanisms and antidepressant interventions.

6.
ACS Omega ; 5(49): 32123-32130, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33344867

RESUMO

AIM OF STUDY: The main objective of this study was to investigate the antithrombotic and antiplatelet effect of the extract from Rostellularia procumbenss (L.) Nees and understand the mechanisms by which it exerts its antithrombotic and antiplatelet mechanisms. MATERIALS AND METHODS: The antithrombotic effective parts (RPE) were isolated using D101 macroporous adsorption resin and potential active ingredients (JAC) were isolated using the preparative liquid-phase method. The lactate dehydrogenase kit was used to determine the toxicity of RPE and JAC to platelets. The antiadhesion effect of RPE and JAC on platelets was observed by fluorescence microscopy with rhodamine phalloidin. Antithrombotic efficacy of RPE and JAC in vivo was evaluated by establishing a rat tail thrombosis model. Contents of p-selectin, TXB2, and 6-keto-PGF1α in rat serum were measured using an enzyme-linked immunosorbent (ELISA) assay, and the rat black tail rate was measured to prove the protective effect of RPE and JAC on the tail thrombus rat model. Western blot was used for detection of serum-related proteins in the tail thrombus rat model. RESULTS: The results showed that RPE had antithrombotic and antiplatelet effects. RPE and JAC have no toxicity to platelets. In vitro experiments showed that RPE and JAC had antiadhesion effects on platelets. In vivo experiments showed that RPE significantly inhibited the increase of p-selectin and TXB2 and significantly increased the content of 6-keto-PGF1α in the serum of rats. Western blot results demonstrated that RPE and JDB significantly inhibited the phosphorylation of the MAPK protein family in the platelets of rats, and RPE also significantly inhibited the phosphorylation of ß3 protein. CONCLUSIONS: RPE has antithrombotic and antiplatelet activity in vivo and vitro. Its mechanism may be via preventing integrin αIIbß3 activation, which in turn leads to the inhibition of the phosphorylation of the MAPK family and further suppresses TXA2, which leads to the antithrombotic and antiplatelet effects.

7.
Front Pharmacol ; 11: 581277, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132913

RESUMO

There has been a large global outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), representing a major public health issue. In China, combination therapy, including traditional Chinese medicine (TCM) as a treatment for COVID-19 has been used widely. "Fei Yan No. 1" (QFDYG) is a formula recommended by the Hubei Government to treat COVID-19. A retrospective study of 84 COVID-19 patients from Hubei Provincial Hospital of TCM and Renmin Hospital of Hanchuan was conducted to explore the clinical efficacy of QFDYG combination therapy. TCMSP and YaTCM databases were used to determine the components of all Chinese herbs in QFDYG. Oral bioavailability (OB) ≥ 30% and drug-like (DL) quality ≥ 0.18 were selected as criteria for screening the active compounds identified within the TCMSP database. The targets of active components in QFDYG were determined using the Swiss TargetPrediction (SIB) and Targetnet databases. The STRING database and the Network Analyzer plugin in Cytoscape were used to obtain protein-protein interaction (PPI) network topology parameters and to identify hub targets. Gene Ontology (GO) enrichment was conducted using FunRich version 3.1.3, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment using ClueGO version 2.5.6 software. PPI and compound-pathway (C-T) networks were constructed using Cytoscape 3.6.0. Compared with the control group, combined treatment with QFDYG resulted in a significantly higher rate of patients recovering from symptoms and shorter the time. After 14 days of treatment, QFDYG combined treatment increased the proportion of patients testing negative for SARS-CoV-2 nucleic acid by RT-PCR. Compared with the control group, promoting focal absorption and inflammation as viewed on CT images. GO and KEGG pathway enrichment indicated that QFDYG principally regulated biological processes, such as inflammation, an immune response, and apoptosis. The present study revealed that QFDYG combination therapy offered particular therapeutic advantages, indicating that the theoretical basis for the treatment of COVID-19 by QFDYG may play an antiviral and immune response regulation through multiple components, targets, and pathways, providing reference for the clinical treatment of COVID-19.

8.
Curr Med Sci ; 40(5): 917-930, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32980902

RESUMO

This study aimed to explore the protective effects of the traditional Chinese Medicine formula Shenkang VII recipe (SK-7) on renal fibrosis and the mechanisms. Renal fibrosis was induced by unilateral ureteral obstruction (UUO) in rats. The rats were then divided into 5 groups: control group (Sham operation), UUO model group, UUO model plus low to high doses of SK-7 (0.5, 1.0, or 2.0 g/kg/day, for 14 days) groups. The animals were sacrificed on the 7th or 14th day. Kidney tissues were collected for histopathological examinations (hematoxylin and eosin and Masson's trichrome staining). Immunohistochemistry was used to detect the expression of collagen type III (Col III), fibronectin (FN), α-smooth muscle actin (α-SMA), TIMP metallopeptidase inhibitor 2 (TIMP2), matrix metallopeptidase 2 (MMP2), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and monocyte chemotactic protein-1 (MCP-1). The TGF-ß1/Smad, NF-kB and Sonic hedgehog signaling proteins were detected by Western blotting. Our results showed that SK-7 prevented UUO-induced renal injury and accumulation of collagen fibrils. Renal fibrosis biomarkers Col III, FN, α-SMA and TIMP2 were increased in the rats after UUO and decreased by SK-7, while MMP2 was upregulated after treatment. SK-7 also suppressed the levels of TNF-α, IL-1ß and MCP-1 in UUO rats. In addition, SK-7 inhibited activation of the TGF-ß/Smad, NF-κB and sonic hedgehog signaling (SHH) pathways. Taken together, these findings suggest that SK-7 may regulate the synthesis and degradation of extracellular matrix, reduce inflammation and suppress the proliferation of fibroblasts, by blocking the TGF-ß1/Smad, NF-κB and SHH signaling pathways to exert its anti-renal fibrosis effect in UUO rats.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Fibrose/tratamento farmacológico , Proteínas Hedgehog/genética , Fator de Crescimento Transformador beta1/genética , Obstrução Ureteral/tratamento farmacológico , Animais , Medicamentos de Ervas Chinesas/química , Fibrose/etiologia , Fibrose/genética , Fibrose/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-2/genética , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Obstrução Ureteral/patologia
9.
Front Pharmacol ; 11: 425, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372953

RESUMO

Taohe-Chengqi decoction (THCQ), a classical traditional Chinese medicinal (TCM) formula, has been extensively used for treating chronic kidney disease (CKD). However, the biological activity and mechanisms of action of its constituents against renal fibrosis have not yet been investigated thoroughly. This study was aimed at devising an integrated strategy for investigating the bioactivity constituents and possible pharmacological mechanisms of the n-butanol extract of THCQ (NE-THCQ) against renal fibrosis. The n-butanol extract of THCQ was prepared by the solvent extraction method. The components of NE-THCQ were analyzed using UPLC-Q/TOF-MS/MS techniques and applied for screening the active components of NE-THCQ according to their oral bioavailability and drug-likeness index. Then, we speculated the potential molecular mechanisms of NE-THCQ against renal fibrosis through pharmacological network analysis. Based on data mining techniques and topological parameters, gene ontology, and pathway enrichment, we established compound-target (C-T), protein-protein interaction (PPI) and compound-target-pathway (C-T-P) networks by Cytoscape to identify the hub targets and pathways. Finally, the potential molecular mechanisms of NE-THCQ against renal fibrosis, as predicted by the network pharmacology analyses, were validated experimentally in renal tubular epithelial cells (HK-2) in vitro and against unilateral ureteral obstruction models in the rat in vivo. We identified 26 components in NE-THCQ and screened seven bioactive ingredients. A total of 118 consensus potential targets associated with renal fibrosis were identified by the network pharmacology approach. The experimental validation results demonstrated that NE-THCQ might inhibit the inflammatory processes, reduce ECM deposition and reverse EMT via PI3K/AKT/mTOR and HIF-1α/VEGF signaling pathways to exert its effect against renal fibrosis. This study identified the potential ingredients of the NE-THCQ by UPLC-Q/TOF-MS/MS and explained the possible mechanisms of NE-THCQ against renal fibrosis by integrating network pharmacology and experimental validation.

10.
Front Pharmacol ; 11: 379, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292350

RESUMO

Glycolysis can improve the tolerance of tissue cells to hypoxia, and its intermediates provide raw materials for the synthesis and metabolism of the tumor cells. If it can inhibit the activity of glycolysis-related enzymes and control the energy metabolism of tumor, it can be targeted for the treatment of malignant tumor. The target proteins phosphoglycerate kinase 2 (PGK2), glycerol-3-phosphate dehydrogenase (GPD2), and glucose-6-phosphate isomerase (GPI) were screened by combining transcriptome, proteomics, and reverse docking. We detected the binding constant of the active compound using microscale thermophoresis (MST). It was found that esculetin bound well with three potential target proteins. Esculetin significantly inhibited the rate of glycolysis, manifested by differences of cellular lactate production and glucose consumption in HepG2 cells with or without esculetin. It was found that GPD2 bound strongly to GPI, revealing the direct interaction between the two glycolysis-related proteins. Animal tests have further demonstrated that esculetin may have anticancer effects by affecting the activity of PGK2, GPD2, and GPI. The results of this study demonstrated that esculetin can affect the glucose metabolism by binding to glycolytic proteins, thus playing an anti-tumor role, and these proteins which have direct interactions are potential novel targets for tumor treatment by esculetin.

11.
Curr Med Sci ; 40(1): 138-144, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32166676

RESUMO

This study examined anti-cancer compounds present in the chloroform extract of the Chinese medicine formula Shenqi San (CE-SS). Silica gel column chromatography, Sephadex LH-20, octadecylsilyl (ODS) column chromatography, and high performance liquid chromatography (HPLC) were used to separate the compounds from CE-SS. The structural formulas of the separated compounds were determined using 1D 1H and 13C experiments as well as high resolution electrospray ionization mass spectroscopy (HRESIMS). The corresponding results were compared with the reported literature data. A total of six compounds were separated and their structures were identified on the basis of corresponding spectroscopic and physico-chemical properties. They were Saikogenin F (I), Prosaikogenin D (II), Prosaikogenin F (III), ß-sitosterol (IV), 3ß,16ß,23-trihydroxy-13,28-epoxyurs-11-ene-3-O-ß-D-glucopyranoside (V), and methyl ursolic acid (VI). The separated compounds were evaluated in vitro for their inhibitory ability against the proliferation of A549 cells via MTT assay. Apoptosis was investigated using Annexin V-FITC/propidium iodide (PI) by flow cytometry. Apoptosis-associated proteins were examined by Western blotting. All the compounds were observed to have inhibitory activities against the proliferation of A549 cells to different degrees. Flow cytometry showed that compound V increased the proportion of apoptotic A549 cells in a dose-dependent manner. Western blotting showed that compound V increased the expression of Bax, cleaved-caspase-3, cleaved-caspase-9 and cleaved-poly ADP-ribose polymerase (PARP), and decreased the expression of Bcl-2. These results indicated that compound V featured a significant inhibitory effect on A549 cells when compared with other compounds, and it may be considered a potential drug against cancers.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Clorofórmio/química , Medicamentos de Ervas Chinesas/farmacologia , Células A549 , Antineoplásicos Fitogênicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Extração Líquido-Líquido , Estrutura Molecular
12.
Free Radic Biol Med ; 152: 504-515, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31784059

RESUMO

The high expression of fatty acid synthase (FAS) in tumor cells is consistent with their elevated requirement for fatty acids for cell membrane synthesis and energy supply to support their almost unlimited proliferation. The expression levels of FAS in tumor cells are related to their proliferation, invasion, and metastasis. This study investigated the possible bioactive ingredients (fraxin, esculetin, scopolin et al.) of Cortex Fraxini and their effects on the interaction between specific proteins. We used microscale thermophoresis (MST) to show that our target protein, FAS (screened by combining transcriptome and network pharmacology), bound to the active compounds in Cortex Fraxini. It was found that FAS bound strongly to Glucose-6-phosphate isomerase (GPI), and that scopolin could affect this interaction by proteomics and MST. The results of this study demonstrate that the active compounds in Cortex Fraxini could play an anti-tumor role by binding to FAS and inhibiting the interactions between FAS and GPI to affect glucose and lipid metabolism, and that the protein pathway is a potential novel target for tumor treatment.


Assuntos
Medicamentos de Ervas Chinesas , Ácido Graxo Sintases , Aesculus , Ácido Graxo Sintases/genética , Ácidos Graxos , Glucose-6-Fosfato Isomerase
13.
Front Pharmacol ; 10: 688, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31263419

RESUMO

The present study explored the possible bioactive ingredients and target protein of Rostellularia procumbens (L.) Nees. Firstly, we found that the ethyl acetate extraction obtained from R. procumbens could inhibit platelet aggregation. Then, gene chip was used to investigate differentially expressed genes and blood absorption compounds were investigated using high performance liquid chromatography-mass spectrometry characterization (LC-MS). Depending on the results of gene chip and LC-MS, the targets of blood absorption compounds were predicted according to the reverse pharmacophore matching model. The platelet aggregation-related genes were discovered in databases, and antiplatelet aggregation-related gene targets were selected through comparison. The functions of target genes and related pathways were analyzed and screened using the DAVID database, and the network was constructed using Cytoscape software. We found that integrin αIIbß3 had a highest degree, and it was almost the intersection of all pathways. Then, blood absorption compounds were screened by optical turbidimetry. Western blot (WB) revealed that justicidin B separated from the ethyl acetate fraction may inhibit the expression of integrin αIIbß3 protein. For the first time, we used Prometheus NT.48 and MST to detect the stability of this membrane protein to optimize the buffer and studied the interaction of justicidin B with its target protein. To our best knowledge, this is the first report to state that justicidin B targets the integrin αIIbß3 protein. We believe that our findings can provide a novel target protein for the further understanding of the mechanism of R. procumbens on platelet aggregation.

14.
J Enzyme Inhib Med Chem ; 34(1): 999-1009, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31072143

RESUMO

This study explored the possible bioactive ingredients and target protein of Rostellularia procumbens (L.) Nees. The results of optical turbidimetry revealed that the ethyl acetate extraction obtained from R. procumbens (L.) Nees could inhibit platelet aggregation. Gene chip was used to investigate differentially expressed genes. According to the results of the gene chip, the targets of compounds isolated from the ethyl acetate extraction were predicted by network pharmacology. Computational studies revealed that chinensinaphthol methyl ether and neojusticin B may target the integrin αIIbß3 protein. The results of Prometheus NT.48 and microscale thermophoresis suggested that the molecular interactions between the two compounds with purified integrin αIIbß3 protein in the optimal test conditions were coherent with the docking results. To our best knowledge, this is the first report to state that chinensinaphthol methyl ether and neojusticin B target the integrin αIIbß3 protein.


Assuntos
Acanthaceae/química , Derivados de Benzeno/farmacologia , Dioxolanos/farmacologia , Éteres/farmacologia , Lignanas/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Derivados de Benzeno/química , Derivados de Benzeno/isolamento & purificação , Dioxolanos/química , Dioxolanos/isolamento & purificação , Relação Dose-Resposta a Droga , Éteres/química , Éteres/isolamento & purificação , Humanos , Lignanas/química , Lignanas/isolamento & purificação , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/isolamento & purificação , Testes de Função Plaquetária , Relação Estrutura-Atividade
15.
Artigo em Inglês | MEDLINE | ID: mdl-29270764

RESUMO

The original version of this article unfortunately contained a mistake. The presentation of the affiliation number was incorrect. The corrected one is given below.Zhong-zhu AI () 1†.

16.
J Huazhong Univ Sci Technolog Med Sci ; 37(5): 766-771, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29058293

RESUMO

The main purpose of this study was to investigate the active components of the Chinese medicine formula Shenqi San (SS) by high performance liquid chromatography with diode array detector and electrospray ionization-hybrid quadrupole time-of-flight mass spectrum (HPLC-DADESI- QTOF-MS), and demonstrate the anticancer mechanism of SS on human lung adenocarcinoma A549 cells by evaluating the cell proliferation and apoptosis induction. The chloroform extraction of SS (CE-SS) was extracted from SS, while HPLC-DAD-ESI-QTOF-MS assay was performed to identify components of CE-SS. MTT assay was used to quantify the proliferation of A549 cells with the treatment of CE-SS. Apoptosis analysis was carried out by detecting phosphatidylserine (PS) externalization using the Annexin V-FITC Apoptosis Detection Kit and the stained cells were analyzed with a flow cytometer. DAPI staining assay was carried out to observe morphological characteristics of apoptotic cells. Western blotting was used to detect the expression of important signaling proteins including caspase-3, -8, -9, p53, Bax and Bcl-2. Eight compounds were identified through HPLC-DAD-ESI-QTOF-MS analysis and 3-pyridine carboxylic acid, barbatin C, scutebarbatine F and barbatine D might be the main compounds responsible for the antitumor effect of CE-SS. CE-SS suppressed the proliferation of lung cancer A549 cells in a time- and dose-dependent manner. By Annexin V-FITC/PI double staining, we found that treatment with CE-SS induced apoptosis in A549 cells. After 24-h exposure to CE-SS, the expression of cleaved-caspase-9, cleaved-caspase-8 and cleaved-caspase-3 protein was activated, the expression of p53 protein increased while the ratio of Bax/Bcl-2 also increased. This study identified the eight compounds of CE-SS, and demonstrated their anticancer effect on human lung adenocarcinoma A549 cells via induction of apoptosis.


Assuntos
Adenocarcinoma/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Pulmonares/metabolismo , Extratos Vegetais/farmacologia , Células A549 , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma de Pulmão , Antineoplásicos Fitogênicos/química , Caspases/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA