Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Pharm ; 19(6): 1814-1824, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35302764

RESUMO

Continuous outbreaks of pertussis around the world suggest inadequate immune protection in infants and weakened immune responses induced over time by the acellular pertussis vaccine. Vaccine adjuvants provide a means to improve vaccine immunogenicity and support long-term adaptive immunity against pertussis. An acellular pertussis vaccine was prepared with pertactin, pertussis toxin, and fimbriae 2/3 antigens combined with a triple-adjuvant system consisting of innate defense regulator peptide IDR 1002, a Toll-like receptor-3 agonist poly(I:C), and a polyphosphazene in a fixed combination. The vaccine was delivered intranasally in a cationic lipid nanoparticle formulation fabricated by simple admixture and two schema for addition of antigens (LT-A, antigens associated outside of L-TriAdj, and LAT, antigens associated inside of L-TriAdj) to optimize particle size and cationic surface charge. In the former, antigens were associated with the lipidic formulation of the triple adjuvant by electrostatic attraction. In the latter, the antigens resided in the interior of the lipid nanoparticle. Two dose levels of antigens were used with adjuvant comprised of the triple adjuvant with or without the lipid nanoparticle carrier. Formulation of vaccines with the triple adjuvant stimulated systemic and mucosal immune responses. The lipid nanoparticle vaccines favored a Th1 type of response with higher IgG2a and IgA serum antibody titers particularly for pertussis toxin and pertactin formulated at the 5 µg dose level in the admixed formulation. Additionally, the lipid nanoparticle vaccines resulted in high nasal SIgA antibodies and an early (4 weeks post vaccination) response after a single vaccination dose. The LT-A nanoparticles trended toward higher titers of serum antibodies compared to LAT. The cationic lipid-based vaccine nanoparticles formulated with a triple adjuvant showed encouraging results as a potential formulation for intranasally administered pertussis vaccines.


Assuntos
Adjuvantes Imunológicos , Lipossomos , Nanopartículas , Vacina contra Coqueluche , Coqueluche , Animais , Anticorpos Antibacterianos , Bordetella pertussis , Cátions , Humanos , Lipossomos/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Toxina Pertussis/administração & dosagem , Toxina Pertussis/imunologia , Vacina contra Coqueluche/administração & dosagem , Vacina contra Coqueluche/química , Vacina contra Coqueluche/imunologia , Vacinação , Coqueluche/prevenção & controle
2.
Pharmaceutics ; 13(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34683979

RESUMO

The unique properties of chitosan make it a useful choice for various nanoparticulate drug delivery applications. Although chitosan is biocompatible and enables cellular uptake, its interactions at cellular and systemic levels need to be studied in more depth. This review focuses on the various physical and chemical properties of chitosan that affect its performance in biological systems. We aim to analyze recent research studying interactions of chitosan nanoparticles (NPs) upon their cellular uptake and their journey through the various compartments of the cell. The positive charge of chitosan enables it to efficiently attach to cells, increasing the probability of cellular uptake. Chitosan NPs are taken up by cells via different pathways and escape endosomal degradation due to the proton sponge effect. Furthermore, we have reviewed the interaction of chitosan NPs upon in vivo administration. Chitosan NPs are immediately surrounded by a serum protein corona in systemic circulation upon intravenous administration, and their biodistribution is mainly to the liver and spleen indicating RES uptake. However, the evasion of RES system as well as the targeting ability and bioavailability of chitosan NPs can be improved by utilizing specific routes of administration and covalent modifications of surface properties. Ongoing clinical trials of chitosan formulations for therapeutic applications are paving the way for the introduction of chitosan into the pharmaceutical market and for their toxicological evaluation. Chitosan provides specific biophysical properties for effective and tunable cellular uptake and systemic delivery for a wide range of applications.

3.
Int J Pharm X ; 2: 100040, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31956860

RESUMO

The past few decades have seen a significant rise in research into alternative polymer based nanosized unilamellar drug delivery systems, termed polymersomes. The reported benefits of polymersomes over the more traditional liposomes include increased stability, higher encapsulation efficacies, better adaptability and reduced water permeation due to an increased bilayer thickness. Together, these advantages render them suitable for a plethora of therapies. The work presented in this manuscript creates and compares four such drug delivery systems, two based on the traditional liposome and two prepared from amphiphilic polymers. From there we assess these systems in terms of size, stability, encapsulation efficiency, drug release, cellular toxicity and cellular uptake. We can confirm from this comprehensive investigation that the multi-functional synthetic polymersomes are undoubtedly a future contender in this expanding field of nanomedicines. Their ability to encapsulate a cocktail of different compounds, high stability as well as their ease of adaptability will ensure that they feature prominently in the future of advanced drug delivery systems.

4.
Sci Rep ; 8(1): 16122, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382116

RESUMO

Oral folate fortification has been successful in many developed nations, however, developing countries still face low compliance and high incidence of folate deficiency associated with low birth weight infants and preterm deliveries. We report safe and efficient approach for transdermal systemic folate delivery using fluidising liposomes (120 ± 4 nm) stabilised within 3D matrix of naturally occurring cosmetic bases: Fuller's earth and henna with room temperature stability. The proof of stratum corneum fluidisation was established ex-vivo by Langmuir-Blodgett film, FTIR and confocal imaging in rat skin. In-vivo topical application in rats showed 11-fold increase in plasma folate within 2 hr, confirming systemic delivery through skin. Efficacy study in folate deficient rats over 4 weeks showed significantly higher plasma levels compared to oral delivery with significant skin depot. Sub-acute toxicity studies in rats at 750-fold higher doses showed safety after 4 weeks daily application. Primary irritation patch test on 25 healthy human volunteers proved non-irritant nature of the nutricosmetics. The technology is first demonstration of transdermal folate fortification with nanosized liposome incorporated in cosmetics, without synthetic surfactants/ethanol or need of external energy. The platform technology opens the possibility of delivering multiple nutrients systemically through skin and can be scaled for affordable community fortification.


Assuntos
Cosméticos/administração & dosagem , Sistemas de Liberação de Medicamentos , Deficiência de Ácido Fólico/terapia , Ácido Fólico/administração & dosagem , Alimentos Fortificados , Administração Cutânea , Adolescente , Adulto , Anemia/terapia , Animais , Derme/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Ácido Fólico/farmacologia , Voluntários Saudáveis , Humanos , Lipossomos , Masculino , Pessoa de Meia-Idade , Nanotubos/química , Nanotubos/ultraestrutura , Tamanho da Partícula , Ratos Sprague-Dawley , Adulto Jovem
5.
Acta Biomater ; 80: 327-340, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30201433

RESUMO

Combination cancer chemotherapy provides an important treatment tool, both as an adjuvant and neoadjuvant treatment, this shift in focus from mono to combination therapies has led to increased interest in drug delivery systems (DDS). DDSs, such as polymersomes, are capable of encapsulating large amounts of multiple drugs with both hydrophilic and hydrophobic properties simultaneously, as well as offering a mechanism to combat multi drug resistant cancers and poor patient tolerance of the cytotoxic compounds utilised. In this article, we report the formulation and evaluation of a novel electroneutral polymersome capable of high encapsulation efficacies for multiple drugs (Doxorubicin, 5-Fluorouracil and leucovorin). The in-vivo biodistribution of the polymersome were established and they were found to accumulate largely in tumour tissue. Polymersome encapsulating the three chemotherapeutic drugs were assessed both in-vitro (BxPC-3 cell line) and in-vivo (following intratumoral and intravenous administration) and compared with the same concentration of the three drugs in solution. We report better efficacy and higher maximum tolerated dose for our combination drug loaded polymersomes in all experiments. Furthermore, intratumorally injected combination drug loaded polymersomes exhibited a 62% reduction in tumour volume after 13 days when compared with the free combination solutions. A smaller differential of 13% was observed for when treatment was administered intravenously however, importantly less cardiotoxicity was displayed from the polymersomal DDS. In this study, expression of a number of survival-relevant genes in tumours treated with the free chemotherapy combination was compared with expression of those genes in tumours treated with the polymersomes harbouring those drugs and the significance of findings is discussed. STATEMENT OF SIGNIFICANCE: The shift in focus from mono to combination chemotherapies has led to an increased interest in the role of drug delivery systems (DDS). Liposomes, although commercialized for mono therapy, have lower loading capacities and stability than their polymeric counterpart, polymersomes. Polymersomes are growing in prevalence as their advantageous properties are better understood and exploited. Here we present a novel polymersome for the encapsulation of three anticancer compounds. This is the first time this particular polymersome has been used to encapsulate these three compounds with both an in-vitro and in-vivo evaluation carried out. This work will be of interest to those in the field of combination therapy, drug delivery, drug toxicity, multidrug resistance, liposomes, DDS and polymersomes.


Assuntos
Eletricidade , Neoplasias/tratamento farmacológico , Polímeros/química , Linhagem Celular Tumoral , Sobrevivência Celular , Liberação Controlada de Fármacos , Quimioterapia Combinada , Regulação Neoplásica da Expressão Gênica , Humanos , Injeções Intravenosas , Neoplasias/patologia , Polímeros/toxicidade , Distribuição Tecidual , Carga Tumoral/efeitos dos fármacos , Imagem Corporal Total
6.
J Control Release ; 264: 136-144, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-28826927

RESUMO

The ability to control drug release at a specific physiological target enables the possibility of an enhanced therapeutic effect with reduced off-target toxic side effects. The discipline of controlled drug release has grown to include most areas of medicine with examples in the literature of targeted drug delivery to the majority of organs within the human body. In addition, a variety of external stimuli used to meditate the drug release process have also been investigated. Nonetheless, the concurrent real time monitoring of drug release has not been widely studied. In this manuscript, we present a novel micellar drug delivery system that is not only capable of releasing its cargo when stimulated by light but also provides a real time analysis of the amount of cargo remaining. Controlled drug release from the delivery system was mediated by physicochemical changes of a spiropyran-merocyanine photochromic dyad, while drug quantification was enabled using a Förster Resonance Energy Transfer (FRET) relationship between the photochrome and a co-encapsulated BODIPY fluorophore. The percentage of drug released from the delivery system was significantly greater (24%) when exposed to light irradiation compared to an analogous control maintained in the dark (5%). Furthermore, the fluorescence read-out capability also enabled the drug-release process to be followed in living cells with a significantly reduced fluorescence emission observed for those cells incubated with the delivery system and exposed to light irradiation compared to control cells maintained in the dark. Combined, these results highlight the utility of this approach to theranostic drug delivery with the potential of light-triggered released together with a fluorescence read-out to enable quantification of the drug release process.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Benzopiranos/administração & dosagem , Sistemas de Liberação de Medicamentos , Ibuprofeno/administração & dosagem , Indóis/administração & dosagem , Nitrocompostos/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Benzopiranos/química , Compostos de Boro/administração & dosagem , Compostos de Boro/química , Liberação Controlada de Fármacos , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , Células HeLa , Humanos , Ibuprofeno/química , Indóis/química , Micelas , Nitrocompostos/química , Raios Ultravioleta
7.
Ther Deliv ; 7(1): 15-31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26652620

RESUMO

Nanomedicine has evolved with the use of biological compounds such as proteins, peptides and DNA. These hydrophilic and often highly charged compounds require a delivery system to allow effective transport and release at the site of action. These new biological therapeutics have not replaced the more traditional smaller molecule, but instead are working synergistically to the benefit of the end user. To that end, drug delivery systems are now required to encapsulate both larger hydrophilic compounds as well as the smaller and generally more hydrophobic compound. This review highlights the emerging role in drug delivery of amphiphilic polymers that by their very nature can associate with compounds of differing physicochemical properties, in particular the role of micelles, polymersomes and nanocapsules.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Polímeros/química , DNA/administração & dosagem , Humanos , Interações Hidrofóbicas e Hidrofílicas , Micelas , Nanocápsulas , Nanomedicina , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA