Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(6): 7983-7995, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38290481

RESUMO

Developing a diffusion barrier layer on material interfaces has potential applications in various fields such as in packaging materials, pharmaceuticals, chemical filtration, microelectronics, and medical devices. Although numerous physical and chemical methods have been proposed to generate the diffusion barrier layer, the complexity of fabrication techniques and the high manufacturing costs limit their practical utility. Here, we propose an innovative approach to fabricate the diffusion barrier layer by irradiating poly(dimethylsiloxane) (PDMS) with a mid-infrared (λ = 10.6 µm) CO2 laser. This process directly creates a diffusion barrier layer on the PDMS surface by forming a heavily cross-linked network in the polymer matrix. The optimal irradiation conditions were investigated by modulating the defocusing distance, laser power, and number of scanning passes. The barrier thickness can reach up to 70 µm as observed by the scanning electron microscope (SEM). The attenuated total reflectance (ATR), electron dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS) analyses collectively confirmed the formation of the SiOx structure on the modified surface based on the decreased methyl group signal and the increased oxygen/silicon ratio. The diffusion test with the model drugs (rhodamine B and donepezil) demonstrated that the modified surface exhibits effective diffusion barrier properties and the rate of drug diffusion through the modified barrier layer can be controlled by the optimization of the irradiation parameters. This novel approach provides the possibility to develop a controllable diffusion barrier layer in a biocompatible polymer with prospective applications in the fields of pharmaceuticals, packing materials, and medical devices.

2.
Angew Chem Int Ed Engl ; 60(31): 17037-17044, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-33955632

RESUMO

In the development of 3D printing fuels, there is a need for new photoinitiating systems working under mild conditions and/or leading to polymers with new and/or enhanced properties. In this context, we introduce herein N-heterocyclic carbene-borane complexes as reagents for a new type of photo-click reaction, the borane-(meth)acrylate click reaction. Remarkably, the higher bond number of boranes relative to thiols induced an increase of the network density associated with faster polymerization kinetics. Solid-state NMR evidenced the strong participation of the boron centers on the network properties, while DMA and AFM showed that the materials exhibit improved mechanical properties, as well as reduced solvent swelling.

3.
Small ; 15(21): e1900162, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30951243

RESUMO

Endothelial and epithelial cells usually grow on a curved environment, at the surface of organs, which many techniques have tried to reproduce. Here a simple method is proposed to control curvature of the substrate. Prestrained thin elastomer films are treated by infrared laser irradiation in order to rigidify the surface of the film. Wrinkled morphologies are produced upon stress relaxation for irradiation doses above a critical value. Wrinkle wavelength and depth are controlled by the prestrain, the laser power, and the speed at which the laser scans the film surface. Stretching of elastomer substrates with a "sand clock"-width profile enables the generation of a stress gradient, which results in patterns of wrinkles with a depth gradient. Thus, different combinations of topography changes on the same substrate can be generated. The wavelength and the depth of the wrinkles, which have the characteristic values within a range of several tens of µm, can be dynamically regulated by the substrate reversible stretching. It is shown that these anisotropic features are efficient substrates to control polarization of cell shapes and orientation of their migration. With this approach a flexible tool is provided for a wide range of applications in cell biophysics studies.


Assuntos
Elastômeros/química , Lasers , Animais , Técnicas de Cultura de Células , Cães , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Microscopia Confocal , Análise Espectral Raman
4.
ACS Appl Mater Interfaces ; 9(12): 10461-10471, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28296389

RESUMO

Topographical and chemical features of biomaterial surfaces affect the cell physiology at the interface and are promising tools for the improvement of implants. The dominance of the surface topography on cell behavior is often accentuated. Striated surfaces induce an alignment of cells and their intracellular adhesion-mediated components. Recently, it could be demonstrated that a chemical modification via plasma polymerized allylamine was not only able to boost osteoblast cell adhesion and spreading but also override the cell alignment on stochastically machined titanium. In order to discern what kind of chemical surface modifications let the cell forget the underlying surface structure, we used an approach on geometric microgrooves produced by deep reactive ion etching (DRIE). In this study, we systematically investigated the surface modification by (i) methyl-, carboxyl-, and amino functionalization created via plasma polymerization processes, (ii) coating with the extracellular matrix protein collagen-I or immobilization of the integrin adhesion peptide sequence Arg-Gly-Asp (RGD), and (iii) treatment with an atmospheric pressure plasma jet operating with argon/oxygen gas (Ar/O2). Interestingly, only the amino functionalization, which presented positive charges at the surface, was able to chemically disguise the microgrooves and therefore to interrupt the microtopography induced contact guidance of the osteoblastic cells MG-63. However, the RGD peptide coating revealed enhanced cell spreading as well, with fine, actin-containing protrusions. The Ar/O2-functionalization demonstrated the best topography handling, e.g. cells closely attached even to features such as the sidewalls of the groove steps. In the end, the amino functionalization is unique in abrogating the cell contact guidance.


Assuntos
Adesão Celular , Materiais Biocompatíveis , Osteoblastos , Propriedades de Superfície , Titânio
5.
Anal Chem ; 80(23): 9188-94, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19551985

RESUMO

In this paper, a new multilayer integrated optical sensor (MIOS) for ammonia detection at room temperature is proposed and characterized. The sensor is integrated on a single-mode TE0-TM0 planar polymer waveguide and based on polyaniline (PANI) sensitive material. A polymethyl methacrylate (PMMA) passive layer is deposited between the waveguide core and PANI sensitive layer in order to decrease optical losses induced by evanescent wave/sensitive material coupling. The design of this new sensor is discussed. Moreover, in order to investigate the feasibility of this sensor, the sensing properties to ammonia at room temperature are studied. A significant change is observed in the guided light output power after the sensor is exposed to ammonia gas, due to PANI absorption coefficient variation. This new ammonia sensor shows fast response and recovery times, good reversibility and repeatability. The metrological parameters (sensitivity, response time and recovery time) of the sensor are strongly influenced by the interaction length (length of sensing region) and the PANI forms (doped and dedoped). The sensor has a logarithmic linear optical response within the ammonia concentration range between 92 to 4618 ppm. These experimental results demonstrate that the MIOS structure presents a potential innovation to elaborate integrated optical sensor based on non transparent (opaque) sensitive material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA