Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38816018

RESUMO

BACKGROUND: Delayed cerebral ischemia and vasospasm are the most common causes of late morbidity following aneurysmal SAH, but their diagnosis remains challenging. PURPOSE: This systematic review and meta-analysis investigated the diagnostic performance of CTP for detection of delayed cerebral ischemia and vasospasm in the setting of aneurysmal SAH. DATA SOURCES: Studies evaluating the diagnostic performance of CTP in the setting of aneurysmal SAH were searched on the Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, Cochrane Clinical Answers, Cochrane Methodology Register, Ovid MEDLINE, EMBASE, American College of Physicians Journal Club, Database of Abstracts of Reviews of Effects, Health Technology Assessment, National Health Service Economic Evaluation Database, PubMed, and Google Scholar from their inception to September 2023. STUDY SELECTION: Thirty studies were included, encompassing 1786 patients with aneurysmal SAH and 2302 CTP studies. Studies were included if they compared the diagnostic accuracy of CTP with a reference standard (clinical or radiologic delayed cerebral ischemia, angiographic spasm) for the detection of delayed cerebral ischemia or vasospasm in patients with aneurysmal SAH. The primary outcome was accuracy for the detection of delayed cerebral ischemia or vasospasm. DATA ANALYSIS: Bivariate random effects models were used to pool outcomes for sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio. Subgroup analyses for individual CTP parameters and early-versus-late study timing were performed. Bias and applicability were assessed using the modified QUADAS-2 tool. DATA SYNTHESIS: For assessment of delayed cerebral ischemia, CTP demonstrated a pooled sensitivity of 82.1% (95% CI, 74.5%-87.8%), specificity of 79.6% (95% CI, 73.0%-84.9%), positive likelihood ratio of 4.01 (95% CI, 2.94-5.47), and negative likelihood ratio of 0.23 (95% CI, 0.12-0.33). For assessment of vasospasm, CTP showed a pooled sensitivity of 85.6% (95% CI, 74.2%-92.5%), specificity of 87.9% (95% CI, 79.2%-93.3%), positive likelihood ratio of 7.10 (95% CI, 3.87-13.04), and negative likelihood ratio of 0.16 (95% CI, 0.09-0.31). LIMITATIONS: QUADAS-2 assessment identified 12 articles with low risk, 11 with moderate risk, and 7 with a high risk of bias. CONCLUSIONS: For delayed cerebral ischemia, CTP had a sensitivity of >80%, specificity of >75%, and a low negative likelihood ratio of 0.23. CTP had better performance for the detection of vasospasm, with sensitivity and specificity of >85% and a low negative likelihood ratio of 0.16. Although the accuracy offers the potential for CTP to be used in limited clinical contexts, standardization of CTP techniques and high-quality randomized trials evaluating its impact are required.

2.
Radiol Cardiothorac Imaging ; 5(5): e220292, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38076597

RESUMO

Purpose: To compare combined cardiac fluorine 18 (18F) fluorodeoxyglucose (FDG) PET/MRI with standard-of-care evaluation using cardiac MRI, 18F-FDG PET/CT, and SPECT perfusion imaging in suspected cardiac sarcoidosis (CS) with respect to radiation dose, imaging duration, and diagnostic test performance. Materials and Methods: Consecutive patients with suspected CS undergoing clinical evaluation with cardiac 18F-FDG PET/CT and gated rest technetium 99m sestamibi SPECT perfusion imaging were prospectively recruited between November 2017 and May 2021 for parallel assessment with combined cardiac 18F-FDG PET/MRI on the same day (ClinicalTrials.gov identifier, NCT03356756). Total effective radiation dose and imaging duration were compared between approaches (combined cardiac PET/MRI vs separate cardiac MRI, PET/CT, and SPECT). MRI findings were initially interpreted without PET data, and then PET and late gadolinium enhancement images were fused and interpreted together. Final diagnosis of CS was established using Japanese Ministry of Health and Welfare guidelines. Results: Forty participants (mean age, 54 years ± 14 [SD]; 26 [65%] male participants) were included, 14 (35%) with a final diagnosis of CS. Compared with separate cardiac MRI, PET/CT, and SPECT perfusion imaging, combined cardiac PET/MRI had 52% lower total radiation dose (8.0 mSv ± 1.2 vs 16.8 mSv ± 1.6, P < .001) and 43% lower total imaging duration (122 minutes ± 15 vs 214 minutes ± 26, P < .001). Combined PET/MRI had the highest area under the curve for diagnosis of CS (0.84) with 96% specificity and 71% sensitivity for colocalized FDG uptake and late gadolinium enhancement in a pattern typical for CS. Conclusion: In the evaluation of suspected CS, combined cardiac 18F-FDG PET/MRI had a lower radiation dose, shorter imaging duration, and higher diagnostic performance compared with standard-of-care imaging.Clinical trial registration no. NCT03356756Keywords: Cardiac Sarcoidosis, 18F-FDG PET/MRI, 18F-FDG PET/CT, SPECT Perfusion Imaging, Cardiac MRI, Standard-of-Care Imaging Supplemental material is available for this article. © RSNA, 2023.

3.
Nature ; 624(7991): 317-332, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092916

RESUMO

The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties1-3. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.0 million cells passing quality control), and a spatial transcriptomic dataset of approximately 4.3 million cells using multiplexed error-robust fluorescence in situ hybridization (MERFISH). The atlas is hierarchically organized into 4 nested levels of classification: 34 classes, 338 subclasses, 1,201 supertypes and 5,322 clusters. We present an online platform, Allen Brain Cell Atlas, to visualize the mouse whole-brain cell-type atlas along with the single-cell RNA-sequencing and MERFISH datasets. We systematically analysed the neuronal and non-neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell-type organization in different brain regions-in particular, a dichotomy between the dorsal and ventral parts of the brain. The dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. Our study also uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types. Finally, we found that transcription factors are major determinants of cell-type classification and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole mouse brain transcriptomic and spatial cell-type atlas establishes a benchmark reference atlas and a foundational resource for integrative investigations of cellular and circuit function, development and evolution of the mammalian brain.


Assuntos
Encéfalo , Perfilação da Expressão Gênica , Transcriptoma , Animais , Camundongos , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/metabolismo , Conjuntos de Dados como Assunto , Hibridização in Situ Fluorescente , Vias Neurais , Neurônios/classificação , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , RNA/análise , Análise da Expressão Gênica de Célula Única , Fatores de Transcrição/metabolismo , Transcriptoma/genética
4.
Radiol Artif Intell ; 5(3): e230001, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37293344

RESUMO

Supplemental material is available for this article. Keywords: CT, Pulmonary Arteries, Embolism/Thrombosis, Feature Detection © RSNA, 2023.

5.
Radiology ; 307(2): e222483, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36809215

RESUMO

Background There is no consensus regarding the relative prognostic value of cardiac MRI and fluorodeoxyglucose (FDG) PET in cardiac sarcoidosis. Purpose To perform a systematic review and meta-analysis of the prognostic value of cardiac MRI and FDG PET for major adverse cardiac events (MACE) in cardiac sarcoidosis. Materials and Methods In this systematic review, MEDLINE, Ovid Epub, CENTRAL, Embase, Emcare, and Scopus were searched from inception until January 2022. Studies that evaluated the prognostic value of cardiac MRI or FDG PET in adults with cardiac sarcoidosis were included. The primary outcome of MACE was assessed as a composite including death, ventricular arrhythmia, and heart failure hospitalization. Summary metrics were obtained using random-effects meta-analysis. Meta-regression was used to assess covariates. Risk of bias was assessed using the Quality in Prognostic Studies, or QUIPS, tool. Results Thirty-seven studies were included (3489 patients with mean follow-up of 3.1 years ± 1.5 [SD]); 29 studies evaluated MRI (2931 patients) and 17 evaluated FDG PET (1243 patients). Five studies directly compared MRI and PET in the same patients (276 patients). Left ventricular late gadolinium enhancement (LGE) at MRI and FDG uptake at PET were both predictive of MACE (odds ratio [OR], 8.0 [95% CI: 4.3, 15.0] [P < .001] and 2.1 [95% CI: 1.4, 3.2] [P < .001], respectively). At meta-regression, results varied by modality (P = .006). LGE (OR, 10.4 [95% CI: 3.5, 30.5]; P < .001) was also predictive of MACE when restricted to studies with direct comparison, whereas FDG uptake (OR, 1.9 [95% CI: 0.82, 4.4]; P = .13) was not. Right ventricular LGE and FDG uptake were also associated with MACE (OR, 13.1 [95% CI: 5.2, 33] [P < .001] and 4.1 [95% CI: 1.9, 8.9] [P < .001], respectively). Thirty-two studies were at risk for bias. Conclusion Left and right ventricular late gadolinium enhancement at cardiac MRI and fluorodeoxyglucose uptake at PET were predictive of major adverse cardiac events in cardiac sarcoidosis. Limitations include few studies with direct comparison and risk of bias. Systematic review registration no. CRD42021214776 (PROSPERO) © RSNA, 2023 Supplemental material is available for this article.


Assuntos
Cardiomiopatias , Miocardite , Sarcoidose , Adulto , Humanos , Fluordesoxiglucose F18 , Prognóstico , Cardiomiopatias/diagnóstico por imagem , Meios de Contraste , Gadolínio , Imageamento por Ressonância Magnética , Sarcoidose/diagnóstico por imagem
6.
Can Assoc Radiol J ; 74(2): 272-287, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36154303

RESUMO

Thoracic interventions are frequently performed by radiologists, but guidelines on appropriateness criteria and technical considerations to ensure patient safety regarding such interventions is lacking. These guidelines, developed by the Canadian Association of Radiologists, Canadian Association for Interventional Radiology and Canadian Society of Thoracic Radiology focus on the interventions commonly performed by thoracic radiologists. They provide evidence-based recommendations and expert consensus informed best practices for patient preparation; biopsies of the lung, mediastinum, pleura and chest wall; thoracentesis; pre-operative lung nodule localization; and potential complications and their management.


Assuntos
Radiografia Torácica , Radiologia Intervencionista , Humanos , Canadá , Radiografia , Radiologistas
7.
Radiology ; 304(3): 566-579, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35579526

RESUMO

Background There is limited consensus regarding the relative diagnostic performance of cardiac MRI and fluorodeoxyglucose (FDG) PET for cardiac sarcoidosis. Purpose To perform a systematic review and meta-analysis to compare the diagnostic accuracy of cardiac MRI and FDG PET for cardiac sarcoidosis. Materials and Methods Medline, Ovid Epub, Cochrane Central Register of Controlled Trials, Embase, Emcare, and Scopus were searched from inception until January 2022. Inclusion criteria included studies that evaluated the diagnostic accuracy of cardiac MRI or FDG PET for cardiac sarcoidosis in adults. Data were independently extracted by two investigators. Summary accuracy metrics were obtained by using bivariate random-effects meta-analysis. Meta-regression was used to assess the effect of different covariates. Risk of bias was assessed using the Quality Assessment Tool for Diagnostic Accuracy Studies-2 tool. The study protocol was registered a priori in the International Prospective Register of Systematic Reviews (Prospero protocol CRD42021214776). Results Thirty-three studies were included (1997 patients, 687 with cardiac sarcoidosis); 17 studies evaluated cardiac MRI (1031 patients) and 26 evaluated FDG PET (1363 patients). Six studies directly compared cardiac MRI and PET in the same patients (303 patients). Cardiac MRI had higher sensitivity than FDG PET (95% vs 84%; P = .002), with no difference in specificity (85% vs 82%; P = .85). In a sensitivity analysis restricted to studies with direct comparison, point estimates were similar to those from the overall analysis: cardiac MRI and FDG PET had sensitivities of 92% and 81% and specificities of 72% and 82%, respectively. Covariate analysis demonstrated that sensitivity for FDG PET was highest with quantitative versus qualitative evaluation (93% vs 76%; P = .01), whereas sensitivity for MRI was highest with inclusion of T2 imaging (99% vs 88%; P = .001). Thirty studies were at risk of bias. Conclusion Cardiac MRI had higher sensitivity than fluorodeoxyglucose PET for diagnosis of cardiac sarcoidosis but similar specificity. Limitations, including risk of bias and few studies with direct comparison, necessitate additional study. © RSNA, 2022 Online supplemental material is available for this article.


Assuntos
Miocardite , Sarcoidose , Adulto , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Sarcoidose/diagnóstico por imagem , Sensibilidade e Especificidade
8.
Eur J Hybrid Imaging ; 5(1): 24, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34913098

RESUMO

PURPOSE: To evaluate the diagnostic and prognostic significance of combined cardiac 18F-fluorodeoxyglucose (FDG) PET/MRI with T1/T2 mapping in the evaluation of suspected cardiac sarcoidosis. METHODS: Patients with suspected cardiac sarcoidosis were prospectively enrolled for cardiac 18F-FDG PET/MRI, including late gadolinium enhancement (LGE) and T1/T2 mapping with calculation of extracellular volume (ECV). The final diagnosis of cardiac sarcoidosis was established using modified JMHW guidelines. Major adverse cardiac events (MACE) were assessed as a composite of cardiovascular death, ventricular tachyarrhythmia, bradyarrhythmia, cardiac transplantation or heart failure. Statistical analysis included Cox proportional hazard models. RESULTS: Forty-two patients (53 ± 13 years, 67% male) were evaluated, 13 (31%) with a final diagnosis of cardiac sarcoidosis. Among patients with cardiac sarcoidosis, 100% of patients had at least one abnormality on PET/MRI: FDG uptake in 69%, LGE in 100%, elevated T1 and ECV in 100%, and elevated T2 in 46%. FDG uptake co-localized with LGE in 69% of patients with cardiac sarcoidosis compared to 24% of those without, p = 0.014. Diagnostic specificity for cardiac sarcoidosis was highest for FDG uptake (69%), elevated T2 (79%), and FDG uptake co-localizing with LGE (76%). Diagnostic sensitivity was highest for LGE, elevated T1 and ECV (100%). After median follow-up duration of 634 days, 13 patients experienced MACE. All patients who experienced MACE had LGE, elevated T1 and elevated ECV. FDG uptake (HR 14.7, p = 0.002), elevated T2 (HR 9.0, p = 0.002) and native T1 (HR 1.1 per 10 ms increase, p = 0.044) were significant predictors of MACE even after adjusting for left ventricular ejection fraction and immune suppression treatment. The presence of FDG uptake co-localizing with LGE had the highest diagnostic performance overall (AUC 0.73) and was the best predictor of MACE based on model goodness of fit (HR 14.9, p = 0.001). CONCLUSIONS: Combined cardiac FDG-PET/MRI with T1/T2 mapping provides complementary diagnostic information and predicts MACE in patients with suspected cardiac sarcoidosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA