Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(17): e36472, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296098

RESUMO

In the food industry, meeting food quality demands is challenging. The quality of wheat flour, one of the most commonly used ingredients, depends on the extent of debranning done to remove the aleurone layer before milling. Therefore, the end product management can be simplified by predicting the properties of wheat flour during the debranning stage. Therefore, the chemical and rheological properties of grains were analyzed at different debranning durations (0, 30, 60 s). Then the images of wheat grain were taken to develop a regression model for predicting the chemical quality (i.e., ash, starch, fat, and protein contents) of the wheat flour. The resulting regression model comprises a convolutional neural network and is evaluated using the coefficient of determination (R 2), root-mean-square error, and mean absolute error as metrics. The results demonstrated that wheat flour contained more fat and protein and less ash with increasing debranning time. The model proved reliable in terms of root-mean-square error, mean absolute error, and R 2 for predicting ash content but not starch, fat, or protein contents, which can be attributed to the lack of features in the collected images of wheat kernels during debranning. In addition, the selected method, debranning, was beneficial to the rheological characteristics of wheat flour. The proportion of fine particles increased with the debranning time. The study experimentally revealed that the end product diversity for wheat flour can be controlled to provide selectable ingredients to customers.

2.
Front Plant Sci ; 14: 1152036, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360731

RESUMO

Optimal sensor location methods are crucial to realize a sensor profile that achieves pre-defined performance criteria as well as minimum cost. In recent times, indoor cultivation systems have leveraged on optimal sensor location schemes for effective monitoring at minimum cost. Although the goal of monitoring in indoor cultivation system is to facilitate efficient control, most of the previously proposed methods are ill-posed as they do not approach optimal sensor location from a control perspective. Therefore in this work, a genetic programming-based optimal sensor placement for greenhouse monitoring and control is presented from a control perspective. Starting with a reference micro-climate condition (temperature and relative humidity) obtained by aggregating measurements from 56 dual sensors distributed within a greenhouse, we show that genetic programming can be used to select a minimum number of sensor locations as well as a symbolic representation of how to aggregate them to efficiently estimate the reference measurements from the 56 sensors. The results presented in terms of Pearson's correlation coefficient (r) and three error-related metrics demonstrate that the proposed model achieves an average r of 0.999 for both temperature and humidity and an average RMSE value of 0.0822 and 0.2534 for temperate and relative humidity respectively. Conclusively, the resulting models make use of only eight (8) sensors, indicating that only eight (8) are required to facilitate the efficient monitoring and control of the greenhouse facility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA