Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38206189

RESUMO

Recent studies have highlighted the importance of maternal nutrition during gestation and lactation in modulating the gastrointestinal development and health of offspring. Therefore, the objective of this study was to determine the effects of live yeast (LY) supplementation to sows during late gestation and throughout lactation on markers of gut health of piglets prior to weaning and immediately postweaning. On day 77 of gestation, forty sows were allotted based on parity and expected farrowing dates to two dietary treatments: without (CON) or with (LY) supplementation at 0.05% and 0.1% of diet during gestation and lactation, respectively. On postnatal days (PND) 0, 10, 18, and postweaning days (PWD) 7 and 14, one piglet from each of 10 sows per treatment were selected for intestinal tissue collection (n = 10). Real-time PCR and western blotting analyses were used to determine the mucosal expression of immune and antioxidant-regulatory genes and tight junction markers of gut health in the duodenum, jejunum, and ileum. Inflammatory and tight junction markers on PND 0 were not affected by maternal dietary treatment. On PND 18, maternal LY supplementation increased (P < 0.05) mRNA expression of interleukin (IL)-6 and tended (P = 0.08) to increase expression of IL-10 in the ileal muocsa. Maternal LY supplementation also increased (P < 0.05) expression of IL-1ß in the ileal mucosa on PWD 14. Likewise, expression of superoxide dismutase (SOD) 1 was increased (P < 0.05) by LY on PND 10, 18, and PWD 14, with a tendency (P = 0.09) for a greater mRNA abundance of catalase on PND 14 in the ileal mucosa. Compared to CON piglets, LY piglets had a higher (P < 0.05) protein abundance of E-cadherin in the jejunal mucosa on PND 0, PWD 7, and PWD 14. Levels of occludin and claudin-4 were also higher (P < 0.05) in the jejunum of LY piglets on PWD 14. No differences were found in jejunal histomorphological measurements between treatments. In conclusion, this study shows that maternal LY supplementation affects key markers of gut health and development in the offspring that may impact the future growth potential and health of newborn piglets.


Increasing evidence supports the benefits of improving sow nutrition during gestation and lactation to promote gastrointestinal development and overall health of piglets. The objective of this research was to investigate the effects of maternal live yeast (LY) supplementation to sows during late gestation and lactation periods on the intestinal health of suckling and weaned piglets. Sows were fed LY during gestation and lactation and piglets were killed for sampling at different time points to track the temporal effect of maternal LY supplementation on changes in markers of intestinal health and development on postnatal days 0, 10, and 18, and postweaning days 7 and 14. Results showed that maternal LY supplementation affected several markers of health and development in the offspring, especially the expression of tight junction proteins, inflammatory cytokines, and antioxidant enzymes. These results indicate that nutritional intervention during gestation and lactation could serve as an effective strategy for raising piglets with better health and growth performance.


Assuntos
Suplementos Nutricionais , Saccharomyces cerevisiae , Feminino , Gravidez , Animais , Suínos , Colostro/metabolismo , Citocinas/genética , Citocinas/metabolismo , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Dieta/veterinária , Lactação , Desmame , RNA Mensageiro/metabolismo , Ração Animal/análise
2.
Curr Res Toxicol ; 5: 100122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720305

RESUMO

The presence of deoxynivalenol (DON), one of the most frequently occurring mycotoxin, in food and feed has been considered a risk factor to both human and animal health. Molecular mechanisms that regulate DON effects in tissues are still poorly understood. However, recent evidence suggests that nuclear factor erythroid 2-like 2 (Nrf2) may be a major target during mycotoxin-induced intestinal barrier dysfunction. Although quercetin, a plant-derived flavonoid, is known to induce the activation of Nrf2 signaling pathway, its potential to mitigate effects of DON and the implication of Nrf2 in its physiological effects is poorly understood. Therefore, this study was conducted to investigate the protective effects of quercetin in alleviating the DON-induced barrier loss and intestinal injuries in IPEC-J2 cells and weaned piglets and determine the potential role of Nrf2. Quercetin treatment dose-dependently increased mRNA expression of Nrf2 target gene, NQO-1, and concomitantly increased the expression of claudin-4 at both mRNA and protein levels. Quercetin supplementation also reversed the reduction of claudin-4 caused by DON exposure in vivo and in vitro. The decreased membrane presence of claudin-4 and ZO-1 induced by DON was also blocked by quercetin. Furthermore, quercetin attenuated the endocytosis and degradation of claudin-4 caused by DON exposure. The effects of quercetin also included the restoration of transepithelial electrical resistance (TEER) and reduction of FITC-dextran permeability that have been perturbed by DON. However, the protective effects of quercetin against DON exposure were abolished by a specific Nrf2 inhibitor (brusatol), confirming the importance of Nrf2 in the regulation of TJP expression and barrier function by quercetin. In vivo study in weaned pigs showed that DON exposure impaired villus-crypt morphology as indicated by diffuse apical villus necrosis, villus atrophy and fusion. Notably, intestinal injuries caused by DON administration were partly mitigated by quercetin supplementation. Collectively, this study shows that quercetin could be used to prevent the DON-induced gut barrier dysfunction in humans and animals and the protective effects of quercetin against DON-induced intestinal barrier disruption is partly through Nrf2-dependent signaling pathway.

3.
Nutr Res Pract ; 17(3): 397-407, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37266116

RESUMO

BACKGROUND/OBJECTIVES: Curcumin is a well-known phytochemical with anti-inflammatory effects. Heat shock protein (HSP) 70, an intracellular chaperone, inhibits proinflammatory signaling activation. Although curcumin has been shown to induce HSP70 expression in various cell types, whether HSP70 mediates the anti-inflammatory effects of curcumin in mature adipocytes remains unclear. MATERIALS/METHODS: To assess the role of HSP70 in regulating the anti-inflammatory response to curcumin in adipocytes, fully differentiated 3T3-L1 adipocytes were treated with curcumin, lipopolysaccharide (LPS), and/or the HSP70 inhibitor pifithrin-µ (PFT-µ). The expression levels of HSP70 and proinflammatory cytokines were then measured. RESULTS: Curcumin upregulated HSP70 expression at both protein and mRNA levels and attenuated LPS-induced Il6, Ptx3, and Ccl2 mRNA upregulation. PFT-µ tended to exacerbate the LPS-induced upregulation of Il6, Ptx3, Ccl2, and Tnfa mRNA expression. However, on curcumin pretreatment, the tendency of PFT-µ to upregulate LPS-induced proinflammatory cytokine expression decreased or disappeared. CONCLUSION: These results indicate that HSP70 is involved in the regulation of inflammatory responses but may not be crucial for the anti-inflammatory effects of curcumin in 3T3-L1 adipocytes.

4.
Toxicol Lett ; 375: 8-20, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36596350

RESUMO

The role of peroxisome proliferator activated receptor gamma (PPARγ) in the regulation of adipocyte differentiation has been well characterized. Besides adipose tissue, PPARγ is also highly expressed in the intestine. However, the functional role of PPARγ in the regulation of intestinal function still remains poorly understood. In the present study, we sought to understand the role of PPARγ activation on regulation of intestinal barrier function in intestinal porcine epithelial cells (IPEC-J2) and weaned piglets exposed to the mycotoxin, deoxynivalenol (DON). PPARγ activation by rosiglitazone and troglitazone, two pharmacological PPARγ ligands, increased the protein expression of tight junction proteins (TJP), claudin-3 and 4. PPARγ inhibition increased endocytosis of claudin-4 which was reversed by its activation with troglitazone. DON exposure decreased the protein expression of TJP, and also significantly suppressed PPARγ transcriptional activity. Interestingly, PPARγ activation reversed the reduction of claudin-3 and 4 caused by DON in vitro and in vivo. PPARγ activation also partially restored the transepithelial electrical resistance (TEER) and reduced the permeability of fluorescein isothiocyanate-dextran (FITC-dextran) that have been negatively impacted by DON. These effects were lost in the presence of a specific PPARγ antagonist or in PPARγ knockout cells, confirming the importance of PPARγ in the regulation of intestinal barrier function and integrity. Likewise, in weaned pigs exposed to DON, the PPARγ agonist pioglitazone mitigated the impaired villus-crypt morphology caused by DON. Therefore, pharmacological and natural bioactive compounds with PPARγ stimulatory activities could be effective in preventing DON-induced gut barrier dysfunction.


Assuntos
Enteropatias , PPAR gama , Suínos , Animais , PPAR gama/genética , PPAR gama/metabolismo , Claudina-4/genética , Claudina-4/metabolismo , Claudina-3/metabolismo , Troglitazona/farmacologia , Junções Íntimas , Células Epiteliais , Mucosa Intestinal/metabolismo , Proteínas de Junções Íntimas/metabolismo , Endocitose
5.
J Anim Physiol Anim Nutr (Berl) ; 107(1): 157-164, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35253266

RESUMO

Fibre plays an important role in diluting dietary energy density. Fibre is also implicated in the regulation of appetite, perhaps through direct effects in the brain. However, there is little information on this effect in pigs. Therefore, this study was conducted to investigate the effect of fibre type in regulating the expression of genes involved in appetite control, inflammation and antioxidant defence in the hypothalamus of weaned piglets. A total of 64 Duroc × Landrace × Yorkshire barrows at 37 days old were blocked by body weight and allotted to two dietary treatments, supplementation with either 0.25% cellulose (Solka-Floc) or inulin (INU) for 28 days, after which animals were killed for analysis. Pigs fed INU had a tendency (p = 0.06) for reduced feed intake in the first week, although this effect disappeared in subsequent weeks. Pigs supplemented with INU had lower expression of dopamine (dopamine receptor D2), serotonin (5-hydroxytryptamine receptor 1B), free fatty acid (GPR43) and neuropeptide Y receptor Y2 receptors in the hypothalamus (p < 0.05). Expression of the tryptophan hydroxylase 2 gene in the hypothalamus also tended (p = 0.09) to be lower for pigs fed INU. The abundance of antioxidant defence genes, superoxide dismutase (SOD1) and catalase, were greater (p < 0.05) but that of a proinflammatory gene, interleukin 1ß, was lower (p < 0.05) in the hypothalamus of pigs fed INU. Therefore, consumption of INU causes downregulation of inflammation in the hypothalamus and regulation of the abundance of serotonin or dopamine receptors, and may also increase antioxidant defence through upregulation of SOD and catalase in weaned piglets.


Assuntos
Antioxidantes , Doenças dos Suínos , Animais , Antioxidantes/metabolismo , Catalase , Suplementos Nutricionais , Inflamação/genética , Inflamação/veterinária , Inulina/farmacologia , Serotonina , Suínos , Superóxido Dismutase , Receptores Dopaminérgicos , Receptores de Serotonina
6.
J Anim Sci ; 100(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36373005

RESUMO

The objective of this trial was to investigate the effect of enzymatically treated yeast (ETY) on the growth performance, nutrient digestibility, immune response, and gut health of weanling pigs. A total of 192 weanling pigs (6.0 ± 1.04 kg) were allocated to 4 corn and soybean-based diets with increasing concentrations of ETY (0, 1, 2, or 4 g/kg) for a 43-d trial. There were 8 replicate pens (4 replicate pens per sex) and 6 pigs per replicate. The experiment was set up as a randomized complete block design with body weight used as a blocking factor. Pigs had ad libitum access to water and diets for the duration of the study. There was no effect of ETY supplementation on the growth performance indices of weanling pigs. At day 14, there was a quadratic decrease (P < 0.05) in the apparent total tract digestibility (ATTD) of acid detergent fiber (ADF). At day 28, there was a linear increase (P < 0.05) in the ATTD of neutral detergent fiber and a quadratic decrease (P < 0.05) in the ATTD of ADF. On day 14, there was a linear increase (P < 0.05) in serum catalase activity with ETY supplementation. There was a linear increase (P < 0.01) in the gene expression of glutathione peroxidase-4 in the ileal mucosa of pigs. Increasing dietary ETY supplementation linearly decreased (P < 0.05) the gene expression of ileal peptide transporter 1. There was a tendency for a quadratic effect (P = 0.07) in the ileal villus height to crypt depth ratio with ETY supplementation. In addition, there was a tendency for a linear increase (P = 0.06) in ileal digesta butyrate with ETY supplementation. In conclusion, the current study demonstrated that dietary ETY supplementation could partly ameliorate the deleterious effects of post-weaning stress by enhancing the antioxidative status of weanling pigs. However, prolonged supplementation of ETY may be needed to see its effect on growth performance.


The post-weaning stage is fraught with challenges that could affect piglet lifetime growth, development, and gut health. Various factors predispose pigs to stress after weaning. These factors include the separation of piglets from the sow, temperature changes, crowding stress, exposure to new animals, and dietary and environmental antigens. With the increased search for antibiotic alternatives in weanling pigs, identifying potential health-promoting feed additives is exigent. Enzymatically treated yeast (ETY) is rich in bioactive components, including immune-stimulating glucans, mannans, and peptides. These may confer beneficial effects on pigs during the post-weaning period. In this study, ETY was supplemented in graded levels in the diet of weanling pigs. Our results showed that dietary ETY supplementation influenced gut health by promoting a better antioxidant status in weanling pigs.


Assuntos
Detergentes , Suplementos Nutricionais , Animais , Suínos , Detergentes/farmacologia , Dieta , Nutrientes , Saccharomyces cerevisiae , Imunidade , Ração Animal/análise , Digestão , Fenômenos Fisiológicos da Nutrição Animal
7.
Food Res Int ; 157: 111420, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761666

RESUMO

Peroxisome proliferator activated receptor gamma (PPARγ) activation has been shown to protect against intestinal injury induced by different stimuli. PPARγ is known to regulate tight junction proteins (TJP) in epithelial cells. Both eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are natural PPARγ agonists, but the implication of PPARγ in their physiological effects on the gut is poorly understood. Therefore, this study was conducted to investigate the mechanism of EPA and DHA effects on intestinal epithelial cell barrier function in IPEC-J2 cells exposed to deoxynivalenol (DON), a known food mycotoxin that is toxic to both humans and animals. Exposure of cells to EPA and DHA significantly increased mRNA expression of a PPARγ target gene, AP2, and concomitantly increased the protein expression of claudin-4. Treatment with EPA and DHA also reversed the endocytosis and degradation of claudin-4 caused by DON exposure. EPA and DHA also restored the membrane presence of claudin-4 and ZO-1 that was disrupted by DON. However, the protective effects of EPA and DHA against DON exposure was abolished by a specific PPARγ antagonist (T0070907), confirming the importance of PPARγ in regulating TJP expression by the fatty acids. Effect of PPARγ activation by EPA and DHA also included the restoration of transepithelial electrical resistance (TEER) and reduction of fluorescein isothiocyanate-labeled dextran (FITC-dextran) permeability that have been perturbed by DON. However, the effectiveness of EPA and DHA in opposing DON-induced decrease in TEER and the increase in FITC-dextran permeability was not affected by PPARγ inhibition, potentially suggesting the involvement of other PPARγ-independent mechanisms in the observed benefits from EPA and DHA. Collectively, this study shows that the protective effects of EPA and DHA against DON-induced intestinal barrier disruption are through both PPARγ-dependent and-independent pathways. Therefore, EPA and DHA containing ingredients could be used to prevent the DON-induced gut barrier dysfunction in humans and animals.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Animais , Claudina-4/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Endocitose , PPAR gama/metabolismo , PPAR gama/farmacologia , Junções Íntimas/metabolismo , Tricotecenos
8.
J Anim Sci ; 100(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35589552

RESUMO

Myo-inositol is a breakdown product of phytate produced in the gut through the action of phytase. Although the effect of phytase-released phosphorus (P) on growth performance of animals has been well characterized, there is still little understanding of the effect of myo-inositol. The first objective of this study was to determine the effects of added myo-inositol to a phytate-rich low-protein diet on growth performance and apparent total tract digestibility (ATTD) in growing piglets. The second objective was to determine whether myo-inositol could directly affect intestinal epithelial cell proliferation and function for which we used intestinal porcine epithelial cells (IPEC-J2). A total of 128 weanling piglets were allotted to four dietary treatments consisting of eight replicates per treatment and four piglets per replicate in a randomized complete block design for 4 wk. The four experimental diets comprised the positive control [PC; 20% crude protein (CP)], negative control (NC; 17% CP), negative control plus 2.0g/kg myo-inositol (NC+INO; 17% CP), and negative control plus 3000FTU/kg phytase (NC+PHY; 17% CP). Average daily feed intake (ADFI), average daily gain (ADG), and gain-feed ratio (G: F) were recorded. Phytase supplementation in the protein-deficient NC diet increased the G:F ratio (P < 0.05) without myo-inositol effects on growth performance. Phosphorus digestibility in the phytase-supplemented group increased compared to the PC, NC, and NC+INO groups, whereas plasma myo-inositol concentration was significantly higher (P < 0.05) in the NC+INO group. Due to the lack of myo-inositol effect on growth performance, an additional in vitro study was conducted to determine the direct effect of myo-inositol on the intestinal epithelium that might not be reflected in growth performance. Myo-inositol increased the mRNA abundance of selected nutrient transporters in a concentration-dependent manner (P < 0.05). Myo-inositol also enhanced barrier integrity in the IPEC-J2 monolayer by increasing the transepithelial electrical resistance (TEER) with reduced paracellular permeability of FITC-dextran (P < 0.05). In conclusion, despite the lack of myo-inositol effect on animal performance, the in vitro data indicate that myo-inositol may directly regulate gut barrier integrity. Addition of myo-inositol to pig diets at levels that enhance intestinal epithelial cell function may result in effects on growth performance and gut health of pigs.


After weaning, piglets undergo various kinds of stress that limit feed intake and nutrient digestibility. Much of the effects are strongest at the still-developing gastrointestinal tract where active feed digestion and nutrient uptake takes place. To sustain intestinal development and function during this stage of life, several nutrient additives are included in diets to promote intestinal function and nutrient uptake. The objective of this study was to assess the effects of phytase and myo-inositol on growth performance and apparent total tract digestibility (ATTD) in growing piglets and determine whether they had any effects on integrity in a cell culture model. In the animal study, phytase supplementation in the protein-reduced diets enhanced the rate of feed conversion, whereas the effect of myo-inositol on growth was not pronounced. Also, plasma concentration increased with myo-inositol addition. Under cell culture condition, myo-inositol enhanced the machinery for nutrients uptake and protein formation of the cells in a fashion that is dependent on its concentration. This study provides information on the potential role of myo-inositol on growth performance of growing piglets.


Assuntos
6-Fitase , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Proliferação de Células , Dieta/veterinária , Dieta com Restrição de Proteínas/veterinária , Suplementos Nutricionais , Digestão , Inositol/farmacologia , Fósforo/metabolismo , Ácido Fítico/metabolismo , Ácido Fítico/farmacologia , Suínos
9.
Front Nutr ; 8: 731930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568407

RESUMO

Xylo-oligosaccharides (XOS) are considered as functional oligosaccharides and have great prebiotic potential. XOS are the degraded products of xylan prepared via chemical, physical or enzymatic degradation. They are mainly composed of xylose units linked by ß-1, 4 bonds. XOS not only exhibit some specific physicochemical properties such as excellent water solubility and high temperature resistance, but also have a variety of functional biological activities including anti-inflammation, antioxidative, antitumor, antimicrobial properties and so on. Numerous studies have revealed in the recent decades that XOS can be applied to many food and feed products and exert their nutritional benefits. XOS have also been demonstrated to reduce the occurrence of human health-related diseases, improve the growth and resistance to diseases of animals. These effects open a new perspective on XOS potential applications for human consumption and animal production. Herein, this review aims to provide a general overview of preparation methods for XOS, and will also discuss the current application of XOS to human and animal health field.

10.
J Anim Sci ; 99(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34460910

RESUMO

The efficacy of exogenous carbohydrases in pig diets has been suggested to depend on enzyme activity and dietary fiber composition, but recent evidence suggests other factors such as ambient temperature might be important as well. Therefore, we investigated the effect of heat stress (HS) on the efficacy of a multienzyme carbohydrase blend in growing pigs. Ninety-six (barrows: gilts; 1:1) growing pigs with initial body weight (BW) of 20.15 ± 0.18 kg were randomly assigned to six treatments, with eight replicates of two pigs per pen in a 3 × 2 factorial arrangement: three levels of carbohydrase (0, 1X, or 2X) at two environmental temperatures (20 °C or cyclical 28 °C nighttime and 35 °C day time). The 1X dose (50 g/tonne) provided 1,250 viscosimetry unit (visco-units) endo-ß-1,4-xylanase, 4,600 units α-l-arabinofuranosidase and 860 visco-units endo-1,3(4)-ß-glucanase per kilogram of feed. Pigs were fed ad libitum for 28 d and 1 pig per pen was sacrificed on day 28. There was no enzyme × temperature interaction on any response criteria; thus, only main effects are reported. Enzyme treatment quadratically increased (P < 0.05) BW on day 28, average daily gain (ADG) (P < 0.05), and average daily feed intake (ADFI) (P < 0.05) with the 1X level being highest. HS reduced the BW at day 14 (P < 0.01) and day 28 (P < 0.01), ADG (P < 0.01), and ADFI (P<0.001). There was a trend of increased feed efficiency (G:F) (P < 0.1) in the HS pigs. HS increased apparent jejunal digestibility of energy (P < 0.05) and apparent ileal digestibility of calcium (P < 0.01). At day 1, HS reduced serum glucose (P < 0.001) but increased nonesterified fatty acid (P < 0.01). In the jejunum, there was a trend of increased villi height by carbohydrases (P < 0.1), whereas HS reduced villi height (P < 0.05). HS increased the jejunal mRNA abundance of IL1ß in the jejunum (P < 0.001). There was a trend for a reduction in ileal MUC2 (P < 0.1) and occludin (P < 0.1) by HS, and a trend for increased PEPT1 (P < 0.1). There was no effect of HS on alpha diversity and beta diversity of the fecal microbiome, but there was an increase in the abundance of pathogenic bacteria in the HS group. In conclusion, HS did not alter the efficacy of carbohydrases. This suggests that carbohydrases and HS modulate pig performance independently.


Assuntos
Ração Animal , Triticum , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Glicosídeo Hidrolases , Resposta ao Choque Térmico , Suínos
11.
Lipids ; 56(5): 509-519, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34212398

RESUMO

Physiological and metabolic effects of fatty acids are determined by their degree of saturation and chain length. Effects of 18-carbon fatty acids with various degrees of saturation on inflammatory, oxidative, and neuropeptide gene transcription, especially in the hypothalamus, in response to LPS-induced acute inflammation have not been well studied. We conducted this study to test whether diets with distinct 18-carbon fatty acid differentially affect inflammatory and metabolic response to LPS exposure in the hypothalamus, liver, and muscle tissues. Four experimental diets were fed for 4 weeks to male C57BL/6J mice, and a terminal 4-h lipopolysaccharide (LPS) injection was administered. Diets included a control diet (CON) containing 5.6% kcal fat from lard and 4.4% kcal fat from soybean oil, and three high-fat diets (HFD) containing 25% kcal fat from lard and 20% kcal fat from either shea butter (SHB; saturated fatty acid-rich fat), olive oil (OLO; monounsaturated fatty acid-rich oil), or soybean oil (SBO; polyunsaturated fatty acid-rich fat). Compared to CON, HFD-fed mice had higher weight gain and body fat accumulation. The SBO group had lowest Cpt1b expression in the liver, and OLO group had the lowest Pomc and the highest Lepr expression in the hypothalamus. LPS challenge increased pro-inflammatory cytokine mRNA expression in the brain and peripheral tissues. However, the diets did not exert distinguishable effects on LPS-induced inflammatory responses. Therefore, saturation degree of 18-carbon fatty acids may not play a critical role in their effects on inflammatory and metabolic indicators in response to acute inflammation induced by LPS.


Assuntos
Dieta Hiperlipídica , Ácidos Graxos , Animais , Carbono , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/efeitos adversos , Hipotálamo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Animals (Basel) ; 11(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921551

RESUMO

This study was conducted to investigate the effects of different patterns and sources of Zn, Fe, Cu, Mn, and Se on performance, mineral deposition (liver, kidney, pancreas, spleen, pectorals muscle, and tibia), and excretion of laying hens, then to find an optimal dietary supplemental pattern of trace elements in laying hens. A total of 864 healthy laying hens with similar laying rate (Roman, 26-week-old) were randomly divided into nine treatments, with six replications of 16 birds per replication, including a control treatment and four patterns with different element sources (inorganic or organic): (1) Control treatment (basic diet without added extra trace minerals, CT); pattern 1, NRC (1994) recommended level (NRC-L): (2) inorganic minerals of NRC-L pattern (IN), (3) organic minerals of NRC-L pattern (ON); pattern 2, NY/T 33-2004 recommended level (NY/T-L): (4) inorganic minerals of NY/T-L pattern (IY), (5) organic minerals of NY/T-L pattern (OY); pattern 3, 50% NRC (1994) recommended level (50% NRC-L): (6) inorganic minerals of 50% NRC-L pattern (IHN), (7) organic minerals of 50% NRC-L pattern (OHN); pattern 4, the ratio of minerals in blood of laying hens was taken as the supplement proportion of trace elements, and Zn was supplemented depended on NRC recommended level (TLB): (8) inorganic minerals of TLB pattern (IB), (9) organic minerals of TLB pattern (OB). Two weeks were allowed for adjustment to the conditions and then measurements were made over eight weeks. Supplementation of trace elements led to increased daily egg weight (p < 0.05). Patterns of minerals in diets affected the content of liver Mn, pancreas Mn, tibia Mn, and the tissues Se (p < 0.05). Sources of minerals had positive effects on daily egg weight (p < 0.05), the concentrations of liver Fe, kidney Cu, tissues Se (except spleen), and fecal Se (p < 0.05). In conclusion, diet supplemented with the organic trace minerals of 50% NRC-L pattern (OHN) in laying hens promoted optimum laying performance, mineral deposition, and reduced mineral excretion.

13.
Arch Toxicol ; 95(6): 2065-2079, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33847777

RESUMO

Mycotoxin contamination in foods is a major risk factor for human and animal health due to its prevalence in cereals and their by-products. Deoxynivalenol (DON), mainly produced by Fusarium genera, is the most common mycotoxin detected in cereal products. Deoxynivalenol disrupts intestinal barrier function and decreases protein levels of tight junction proteins (TJP). However, the overall mechanism by which DON regulates specific TJP turnover and epithelial cell integrity remains unclear. Herein, we show that DON (2 µM) decreases the protein stability and accelerates the degradation of TJP in the lysosome. Interestingly, pretreatment of cells with dynasore (a dynamin-dependent endocytosis inhibitor) protected against DON-induced degradation of claudin-3 and 4. Immunofluorescence analysis also shows that the decreased membrane presence of claudin-4 and ZO-1 induced by DON is reversible with dynamin inhibition, whereas the pretreatment with cytochalasin D (an actin-dependent endocytosis inhibitor) reverses the degradation of claudin-1 and 4 induced by DON. We also show that the endocytosis and degradation of claudin-1 is regulated by p38 mitogen-activated protein kinase (MAPK), whereas the endocytosis of claudin-4 and ZO-1 is mediated by c-Jun-N-terminal kinase (JNK). Resveratrol, with JNK inhibitory activity, also prevents the endocytosis and degradation of claudin-4 and ZO-1 and protects against DON-induced decrease in transepithelial electrical resistance (TEER) and increase in FITC-dextran permeability. Collectively, this study, for the first time, shows that DON accelerates the endocytosis and degradation of TJP and this is regulated by the activation of p38 MAPK and JNK signaling pathways. Therefore, natural bioactive compounds with p38 MAPK and JNK inhibitory activities may be effective in preventing the DON-induced TJP disruption and preserve gut barrier function in vivo.


Assuntos
Jejuno/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Junções Íntimas/metabolismo , Tricotecenos/toxicidade , Animais , Linhagem Celular , Endocitose/efeitos dos fármacos , Jejuno/citologia , Jejuno/patologia , Permeabilidade , Estabilidade Proteica/efeitos dos fármacos , Suínos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
FASEB J ; 35(2): e21356, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33484473

RESUMO

Intestinal epithelial cells are tightly bound by tight junction proteins (TJP) which are dynamic and sensitive to environmental stress. However, the role of the endocytic pathway in the regulation of TJP abundance and tight junction integrity during nutrient stress is poorly understood. Therefore, this study was conducted to investigate the regulation of TJP abundance during nutrient starvation and the role of the endocytic mechanism in this process. IPEC-J2 cells were subjected to nutrient starvation in Krebs-Ringer bicarbonate buffer (KRB) and abundance of TJP, an indication of tight junction remodeling, was characterized with RT-PCR, western blotting and immunofluorescence. Abundance of TJP was dynamically regulated by nutrient starvation. The protein levels of claudin-1, 3, and 4 were initially downregulated within the first 6 hours of starvation, and then, increased thereafter (P < .01). However, there was no change in occludin and ZO-1. Lysosome and proteasome inhibitors were used to determine the contribution of these protein degradation pathways to the TJP remodeling. Short-term starvation-induced degradation of claudin-1, 3, and 4 was found to be lysosome dependent. Specifically, the downregulation of claudin-3 and 4 was via a dynamin-dependent, but clathrin and caveolae independent, endocytic pathway and this downregulation was partly reversed by amino acids supplementation. Interestingly, the re-synthesis of TJP with prolonged starvation partly depended on proteasome function. Collectively, this study, for the first time, elucidated a major role for dynamin-dependent endocytosis of claudin-3 and 4 during nutrient stress in intestinal epithelial cells. Therefore, transient endocytosis inhibition may be a potential mechanism for preserving tight junction integrity and function in metabolic or pathological states such as inflammatory bowel disease that involves destruction of intestinal epithelial TJP.


Assuntos
Endocitose , Enterócitos/metabolismo , Nutrientes/deficiência , Inanição/metabolismo , Junções Íntimas/metabolismo , Animais , Linhagem Celular , Dinaminas/metabolismo , Jejuno/citologia , Ocludina/metabolismo , Suínos , Proteína da Zônula de Oclusão-1/metabolismo
15.
Anim Nutr ; 6(4): 421-428, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33364458

RESUMO

The intestinal tract is a host to 100 trillion of microbes that have co-evolved with mammals over the millennia. These commensal organisms are critical to the host survival. The roles that symbiotic microorganisms play in the digestion, absorption, and metabolism of nutrients have been clearly demonstrated. Additionally, commensals are indispensable in regulating host immunity. This is evidenced by the poorly developed gut immune system of germ-free mice, which can be corrected by transplantation of specific commensal bacteria. Recent advances in our understanding of the mechanism of host-microbial interaction have provided the basis for this interaction. This paper reviews some of these key studies, with a specific focus on the effect of the microbiome on the immune organ development, nonspecific immunity, specific immunity, and inflammation.

16.
Poult Sci ; 99(11): 6233-6238, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33142541

RESUMO

Zinc is vital for proper functioning of an animal. Two sources of zinc are commonly supplemented in animal feed, organic and inorganic zinc, and there are reports that the former is absorbed to a greater extent than the latter. We hypothesized that supplementary zinc would increase zinc content in eggs of laying hens and that organic zinc would be more effective than inorganic zinc. To test these hypotheses, we examined the effect of levels and sources of supplemental dietary zinc on average daily feed intake (ADFI), egg production, and zinc content in eggs and on serum antioxidant capacity and zinc concentration in laying hens. A total of 720 Roman laying hens (21-week-old) were randomly assigned to 5 treatment groups with 6 replicates, with 24 hens in each replicate. Two sources of zinc, organic (zinc amino acid complex) and inorganic (zinc sulfate), each with 2 levels, low (35 mg/kg) and high (70 mg/kg), comprised 4 treatment groups, and a control group without supplementary zinc was the fifth group. Seven days were allowed for adjustment to the conditions, and then measurements were taken over 42 D. There was no difference in ADFI, average egg weight (EW), ADFI-to-EW ratio, and egg quality (P > 0.05) among the 5 treatment groups; supplemental zinc increased serum concentrations of Zn2+ and Cu-Zn superoxide dismutase and tended to increase superoxide dismutase content (P = 0.065). Zinc content in eggs increased linearly with supplementary organic zinc (N = 18, R2 = 0.363, P = 0.008) and with supplementary inorganic zinc (N = 18, R2 = 0.366, P = 0.008) treatment, but there was no difference between the source treatments of zinc. Therefore, our first hypothesis was supported, but our second one was not supported. We concluded that zinc supplementation is effective in enhancing zinc content in eggs and in improving antioxidant capacity in laying hens.


Assuntos
Antioxidantes , Galinhas , Suplementos Nutricionais , Ovulação , Óvulo , Zinco , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Galinhas/sangue , Galinhas/fisiologia , Dieta/veterinária , Ovos/análise , Ovos/normas , Feminino , Ovulação/efeitos dos fármacos , Óvulo/química , Distribuição Aleatória , Zinco/análise , Zinco/sangue , Zinco/farmacologia
17.
J Anim Sci ; 98(7)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32607561

RESUMO

The study was conducted to determine the effects of high levels of phytase on growth performance, nutrient digestibility, phytate breakdown, and expression of mucosal tight junction and nutrient transporter genes in weanling pigs. A total of 128 barrows were penned in groups of four and used in a randomized completely block design and assigned to four treatments for a 28-d study. A two-phase feeding was implemented (phase 1: day 1 to 14; phase 2: day 15 to 28). The diets differed in dietary calcium (Ca) and phosphorus (P) levels (positive control [PC]: 8.1 to 7.1 g/kg Ca and 6.5 to 6.8 g/kg P; negative control [NC]: 6.6 to 5.5 g/kg Ca and 5.6 to 5.3 g/kg P) from phase 1 to phase 2, respectively. NC diets were supplemented with phytase at 0 (NC), 1,500 (NC + 1,500), or 3,000 (NC + 3,000) phytase units (FTU)/kg. Blood was collected after fasting (day 27) or feeding (day 28) for the measurement of plasma inositol concentrations. On day 28, two pigs per pen were euthanized. Duodenal-jejunal and ileal digesta samples and feces were collected to determine inositol phosphates (InsP3-6) concentrations. Phytase supplementation increased the body weight on days 14 and 28 (P < 0.05). Average daily gain and feed efficiency compared with NC were increased by phytase with the majority of its effect in phase 1 (P < 0.05). The apparent ileal digestibility and apparent total tract digestibility of P were increased in piglets fed phytase-supplemented diets (P < 0.01) compared with NC piglets. Disappearance of InsP6 and total InsP3-6 up to the duodenum-jejunum, ileum, and in feces was increased by both phytase application rates (P < 0.01). Plasma concentrations of myo-inositol were higher (P < 0.001) in the phytase-supplemented diets than PC and NC diets, irrespective of whether pigs were fed or fasted. Expression of claudin 3 was higher in pigs fed both phytase-supplemented diets in the duodenum and jejunum compared with PC and NC. Mucin 2 expression was lower in the ileum of NC + 3,000 fed piglets compared with PC (P < 0.05), whereas expression of GLUT2 (solute carrier family 2-facilitated glucose transporter member 2) was increased (P < 0.05) by the NC + 3,000 treatment in all sections. In summary, high phytase supplementation increased the growth performance of nursery pigs. The increased expression of GLUT2 by phytase may indicate an upregulation of glucose absorption from the intestine by phytase.


Assuntos
6-Fitase/farmacologia , Digestão/efeitos dos fármacos , Suínos/fisiologia , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/genética , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Cálcio da Dieta/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Digestão/fisiologia , Fezes , Trato Gastrointestinal/metabolismo , Íleo/metabolismo , Inositol/administração & dosagem , Masculino , Nutrientes , Fósforo/metabolismo , Fósforo na Dieta/metabolismo , Ácido Fítico/metabolismo , Proteínas de Junções Íntimas/genética , Junções Íntimas/metabolismo
18.
iScience ; 23(6): 101167, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32480124

RESUMO

Inhibition of Notch signaling has been shown to induce white to beige transformation of adipocytes and reduce the risk of obesity in mice. However, it remains unknown whether the metabolic benefits of Notch inhibition are dependent on uncoupling protein 1 (UCP1)-mediated thermogenesis and evolutionarily relevant in other mammalian species. Here we report the effect of Notch inhibition in adipocytes of pigs, which lost the UCP1 gene during evolution. Notch inhibition using a γ-secretase inhibitor dibenzazepine (DBZ) promoted beige adipogenesis and mitochondrial biogenic gene expression in porcine adipocytes. Moreover, encapsulation of DBZ into poly(lactide-co-glycolide) nanoparticles enabled rapid cellular internalization and enhanced bioactivity to achieve sustained Notch inhibition, thereby inducing beige-specific gene expression and reducing subcutaneous adipose tissue expansion in pigs. These results demonstrate for the first time a role of Notch signaling in regulating adipose plasticity in large animals, highlighting the therapeutic potential of targeting Notch signaling in obesity treatment.

19.
Poult Sci ; 99(2): 981-991, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32036990

RESUMO

This study was conducted to determine effects of high phytase use on growth performance, amino acid (AA) digestibility, intestinal phytate breakdown, and nutrient transporter expression in starter broiler chickens. Male Ross 308 chicks were allocated to 24 pens, at 15 birds/pen and assigned to one of 4 dietary treatments. Treatments were: a control diet (PCa+) that contained adequate levels of calcium (Ca) and phosphorus (P) for growing broiler chicks; a reduced Ca and P diet (PCa-:-1.5 g P/kg and -1.6 g Ca/kg), and 2 additional diets in which phytase was supplemented in the PCa- diet at 1,500 (PCa-Phy1500) and 3,000 (PCa-Phy3000) FTU/kg feed. A common starter diet was fed from day 1 to 8. From day 8 to 22, birds were fed the 4 experimental diets. On day 22, birds were killed for sample collection. From day 8 to 15, average daily gain and average daily feed intake were not different across treatments (P < 0.05) but gain-to-feed ratio (G:F) was reduced (P < 0.006) in the PCa- treatment compared with other treatments. There were no further performance differences, but a tendency of phytase treatments improving the overall G:F (P = 0.079; day 8-22). Up to both the duodenum-jejunum and ileum, phytate, P, and Ca disappearance were increased (P < 0.05) in the PCa-Phy1500 and PCa-Phy3000 treatments compared with PCa- treatment. Phytase dose dependently increased myoinositol (MI) concentration in the digesta from both the duodenum-jejunum and ileum (P < 0.001). The highest concentration of MI was found in the PCa-Phy3000 treatment. Plasma MI concentration was increased by phytase supplementation (P < 0.001). Prececal disappearance of Cys was lower (P < 0.05) in the PCa- treatment than in PCa1and PCa-Phy3000 treatment. Expression of MUC2 in the duodenum-jejunum was higher (P < 0.05) in the PCa-Phy3000 treatment than in other treatments. Phytase-induced hydrolysis of phytate led to elevated digesta and plasma MI concentrations and reduced digesta concentrations of phytate breakdown intermediates.


Assuntos
6-Fitase/administração & dosagem , Galinhas/metabolismo , Mucina-2/metabolismo , Ácido Fítico/metabolismo , Aminoácidos/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Cálcio da Dieta , Galinhas/genética , Dieta/veterinária , Expressão Gênica/efeitos dos fármacos , Masculino , Mucina-2/genética , Fósforo na Dieta
20.
Foods ; 9(1)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936314

RESUMO

The objective of this study was to compare the effect of sodium selenite (SS) and selenium yeast (SY) on performance, egg quality, and selenium concentration in eggs and serum biochemical indices in laying hens. Seven hundred twenty healthy Roman laying hens (21 weeks old, 18 weeks in lay) with a similar laying rate (90.27% ± 1.05%) were randomly divided into 5 groups with 6 replicates of 24 hens each. Five diets were prepared as a 1+2×2 factorial arrangement with control and two sources of Se at two levels. Control diet (control) was prepared without adding exogenous selenium (analyzed basal Se content of 0.178 mg/kg). The other four diets were prepared with the control diet supplemented with SY or SS at 0.3 mg/kg (low; L) or 0.5 mg/kg (high; H) to give 5 diets designated as control, SY-L, SY-H, SS-L, and SS-H. The analyzed selenium content in the SY-L, SY-H, SS-L, and SS-H diets were 0.362, 0.572, 0.323, and 0.533 mg/kg respectively. The pre-trial period lasted 7 d, and the experimental period lasted 56 d (30 weeks old), during which the egg production, egg quality, and hen serum parameters were measured. Results showed that selenium source and level had no effect (P > 0.05) on average daily egg weight and feed conversion ratio (FCR). However, the laying rate was different at the L and H levels of supplementation, regardless of source, such that hens that were supplemented had a higher performance than that of the control, and the H level of supplementation lead to a higher laying rate than that of the L level (P < 0.05). There was a difference in average daily feed intake (ADFI) with an interaction in selenium source and level (P < 0.05), such that SS-L was higher than other selenium supplemented treatment or control. There were no significant differences in egg quality (P > 0.05); at the high level, SY had higher egg yolk selenium compared with SS. However, within SY, adding 0.5 mg/kg selenium led to higher egg yolk selenium than 0.3 mg/kg selenium (P < 0.05). Moreover, adding 0.3 mg/kg SY, 0.3 mg/kg, or 0.5 mg/kg SS to the basal diet had no significant effect on the selenium content in the egg (P > 0.05). There were no significant differences in serum biochemical indices among the five groups (P > 0.05). In conclusion, adding a high level of selenium in the diet of laying hens significantly increased egg production, and addition of a high level of selenium in the form of SY led to a higher deposition of selenium in the yolk than that of SS. These results indicate that adding 0.5 mg/kg of SY in the diet of laying hens would result in Se-enriched eggs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA