Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
eNeurologicalSci ; 22: 100323, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33604461

RESUMO

OBJECTIVE: The Mobile Universal Lexicon Evaluation System (MULES) is a rapid picture naming task that captures extensive brain networks involving neurocognitive, afferent/efferent visual, and language pathways. Many of the factors captured by MULES may be abnormal in sleep-deprived residents. This study investigates the effect of sleep deprivation in post-call residents on MULES performance. METHODS: MULES, consisting of 54 color photographs, was administered to a cohort of neurology residents taking 24-hour in-hospital call (n = 18) and a group of similar-aged controls not taking call (n = 18). Differences in times between baseline and follow-up MULES scores were compared between the two groups. RESULTS: MULES time change in call residents was significantly worse (slower) from baseline (mean 1.2 s slower) compared to non-call controls (mean 11.2 s faster) (P < 0.001, Wilcoxon rank sum test). The change in MULES time from baseline was significantly correlated to the change in subjective level of sleepiness for call residents and to the amount of sleep obtained in the 24 h prior to follow-up testing for the entire cohort. For call residents, the duration of sleep obtained during call did not significantly correlate with change in MULES scores. There was no significant correlation between MULES change and sleep quality questionnaire score for the entire cohort. CONCLUSION: The MULES is a novel test for effects of sleep deprivation on neurocognition and vision pathways. Sleep deprivation significantly worsens MULES performance. Subjective sleepiness may also affect MULES performance. MULES may serve as a useful performance assessment tool for sleep deprivation in residents.

2.
J Neurol Sci ; 402: 52-56, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31103959

RESUMO

OBJECTIVE: The Mobile Universal Lexicon Evaluation System (MULES) is a test of rapid picture naming under investigation. Measures of rapid automatic naming (RAN) have been used for over 50 years to capture aspects of vision and cognition. MULES was designed as a series of 54 grouped color photographs (fruits, random objects, animals) that integrates saccades, color perception and contextual object identification. We examined MULES performance in youth, collegiate and professional athletes at pre-season baseline and at the sidelines following concussion. METHODS: Our study teams administered the MULES to youth, collegiate and professional athletes during pre-season baseline testing. Sideline post-concussion time scores were compared to pre-season baseline scores among athletes with concussion to determine degrees and directions of change. RESULTS: Among 681 athletes (age 17 ±â€¯4 years, range 6-37, 38% female), average test times at baseline were 41.2 ±â€¯11.2 s. The group included 280 youth, 357 collegiate and 44 professional athletes; the most common sports were ice hockey (23%), soccer (17%) and football (11%). Age was a predictor of MULES test times, with longer times noted for younger participants (P < .001, linear regression). Consistent with other timed performance measures, significant learning effects were noted for the MULES during baseline testing with trial 1 test times (mean 49.2 ±â€¯13.1 s) exceeding those for trial 2 (mean 41.3 ±â€¯11.2 s, P < .0001, paired t-test). Among 17 athletes with concussion during the sports seasons captured to date (age 18 ±â€¯3 years), all showed increases (worsening) of MULES time scores from pre-season baseline (median increase 11.2 s, range 0.6-164.2, P = .0003, Wilcoxon signed-rank test). The Symptom Severity Score from the SCAT5 Symptom Evaluation likewise worsened from pre-season baseline following injury among participants with concussion (P = .002). CONCLUSIONS: Concussed athletes demonstrate worsening performance on the MULES test compared to their baseline time scores. This test samples a wide network of brain pathways and complements other vision-based measures for sideline concussion assessment. The MULES test demonstrates capacity to identify athletes with sports-related concussion.


Assuntos
Traumatismos em Atletas/diagnóstico , Concussão Encefálica/diagnóstico , Exame Neurológico/métodos , Avaliação de Sintomas/métodos , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Nomes , Estimulação Luminosa , Adulto Jovem
3.
Ann Neurol ; 85(5): 618-629, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30851125

RESUMO

OBJECTIVE: To determine the optimal thresholds for intereye differences in retinal nerve fiber and ganglion cell + inner plexiform layer thicknesses for identifying unilateral optic nerve lesions in multiple sclerosis. Current international diagnostic criteria for multiple sclerosis do not include the optic nerve as a lesion site despite frequent involvement. Optical coherence tomography detects retinal thinning associated with optic nerve lesions. METHODS: In this multicenter international study at 11 sites, optical coherence tomography was measured for patients and healthy controls as part of the International Multiple Sclerosis Visual System Consortium. High- and low-contrast acuity were also collected in a subset of participants. Presence of an optic nerve lesion for this study was defined as history of acute unilateral optic neuritis. RESULTS: Among patients (n = 1,530), receiver operating characteristic curve analysis demonstrated an optimal peripapillary retinal nerve fiber layer intereye difference threshold of 5µm and ganglion cell + inner plexiform layer threshold of 4µm for identifying unilateral optic neuritis (n = 477). Greater intereye differences in acuities were associated with greater intereye retinal layer thickness differences (p ≤ 0.001). INTERPRETATION: Intereye differences of 5µm for retinal nerve fiber layer and 4µm for macular ganglion cell + inner plexiform layer are robust thresholds for identifying unilateral optic nerve lesions. These thresholds may be useful in establishing the presence of asymptomatic and symptomatic optic nerve lesions in multiple sclerosis and could be useful in a new version of the diagnostic criteria. Our findings lend further validation for utilizing the visual system in a multiple sclerosis clinical trial setting. Ann Neurol 2019;85:618-629.


Assuntos
Internacionalidade , Esclerose Múltipla/diagnóstico por imagem , Nervo Óptico/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Acuidade Visual/fisiologia , Adolescente , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/epidemiologia , Células Ganglionares da Retina/patologia , Neurônios Retinianos/patologia , Adulto Jovem
4.
Curr Opin Neurol ; 32(1): 68-74, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30516648

RESUMO

PURPOSE OF REVIEW: To review emerging vision-based assessments in the evaluation of concussion. RECENT FINDINGS: Involvement of the visual pathways is common following concussion, the mildest form of traumatic brain injury. The visual system contains widely distributed networks that are prone to neurophysiologic changes after a concussion, resulting in visual symptoms and ocular motor dysfunction. Vision-based testing is increasingly used to improve detection and assess head injury. Several rapid automatized naming (RAN) tasks, such as the King-Devick test and the Mobile Universal Lexicon Evaluation System, show capacity to identify athletes with concussion. Video-oculography (VOG) has gained widespread use in eye-tracking and gaze-tracking studies of head trauma from which objective data have shown increased saccadic latencies, saccadic dysmetria, errors in predictive target tracking, and changes in vergence in concussed individuals. SUMMARY: RAN tasks demonstrate promise as rapid screening tools for concussion. Further investigation will involve assessment of the role for age, characterization of learning effects over repeated measurements, and identification of optimal thresholds for clinically significant performance decrements. Various RAN tasks are likely to be functionally distinct, engaging different neural networks according to the demands of each task. Measures of saccades, smooth pursuit eye-movements, the vestibulo-ocular reflex and, more recently, disparity vergence are candidate vision-based markers for concussion. Work to adopt these assessments to the sideline or clinical environments is ongoing.


Assuntos
Concussão Encefálica/complicações , Movimentos Sacádicos/fisiologia , Transtornos da Visão/etiologia , Vias Visuais/fisiopatologia , Concussão Encefálica/fisiopatologia , Humanos , Exame Neurológico , Transtornos da Visão/fisiopatologia
5.
J Neuroophthalmol ; 39(1): 68-81, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30358639

RESUMO

BACKGROUND: Concussion leads to neurophysiologic changes that may result in visual symptoms and changes in ocular motor function. Vision-based testing is used increasingly to improve detection and assess head injury. This review will focus on the historical aspects and emerging data for vision tests, emphasizing rapid automatized naming (RAN) tasks and objective recording techniques, including video-oculography (VOG), as applied to the evaluation of mild traumatic brain injury. METHODS: Searches on PubMed were performed using combinations of the following key words: "concussion," "mild traumatic brain injury," "rapid automatized naming," "King-Devick," "mobile universal lexicon evaluation system," "video-oculography," and "eye-tracking." Additional information was referenced from web sites of vendors of commercial eye-tracking systems and services. RESULTS: Tests of rapid number, picture, or symbol naming, termed RAN tasks, have been used in neuropsychological studies since the early 20th century. The visual system contains widely distributed networks that are readily assessed by a variety of functionally distinct RAN tasks. The King-Devick test, a rapid number naming assessment, and several picture-naming tests, such as the Mobile Universal Lexicon Evaluation System (MULES) and the modified Snodgrass and Vanderwart image set, show capacity to identify athletes with concussion. VOG has gained widespread use in eye- and gaze-tracking studies of head trauma from which objective data have shown increased saccadic latencies, saccadic dysmetria, errors in predictive target tracking, and changes in vergence in concussed subjects. Performance impairments on RAN tasks and on tasks recorded with VOG are likely related to ocular motor dysfunction and to changes in cognition, specifically to attention, memory, and executive functioning. As research studies on ocular motor function after concussion have expanded, so too have commercialized eye-tracking systems and assessments. However, these commercial services are still investigational and all vision-based markers of concussion require further validation. CONCLUSIONS: RAN tasks and VOG assessments provide objective measures of ocular motor function. Changes in ocular motor performance after concussion reflect generalized neurophysiologic changes affecting a variety of cognitive processes. Although these tests are increasingly used in head injury assessments, further study is needed to validate them as adjunctive diagnostic aids and assessments of recovery.


Assuntos
Traumatismos Craniocerebrais/complicações , Técnicas de Diagnóstico Oftalmológico/normas , Guias como Assunto , Transtornos da Visão/diagnóstico , Humanos , Transtornos da Visão/etiologia
6.
J Neurol Sci ; 394: 1-5, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30193154

RESUMO

OBJECTIVE: The Mobile Universal Lexicon Evaluation System (MULES) is a test of rapid picture naming that is under investigation for concussion. MULES captures an extensive visual network, including pathways for eye movements, color perception, memory and object recognition. The purpose of this study was to introduce the MULES to visual assessment of patients with MS, and to examine associations with other tests of afferent and efferent visual function. METHODS: We administered the MULES in addition to binocular measures of low-contrast letter acuity (LCLA), high-contrast visual acuity (VA) and the King-Devick (K-D) test of rapid number naming in an MS cohort and in a group of disease-free controls. RESULTS: Among 24 patients with MS (median age 36 years, range 20-72, 64% female) and 22 disease-free controls (median age 34 years, range 19-59, 57% female), MULES test times were greater (worse) among the patients (60.0 vs. 40.0 s). Accounting for age, MS vs. control status was a predictor of MULES test times (P = .01, logistic regression). Faster testing times were noted among patients with MS who had greater (better) performance on binocular LCLA at 2.5% contrast (P < .001, linear regression, accounting for age), binocular high-contrast VA (P < .001), and K-D testing (P < .001). Both groups demonstrated approximately 10-s improvements in MULES test times between trials 1 and 2 (P < .0001, paired t-tests). CONCLUSION: The MULES test, a complex task of rapid picture naming involves an extensive visual network that captures eye movements, color perception and the characterization of objects. Color recognition, a key component of this novel assessment, is early in object processing and requires area V4 and the inferior temporal projections. MULES scores reflect performance of LCLA, a widely-used measure of visual function in MS clinical trials. These results provide evidence that the MULES test can add efficient visual screening to the assessment of patients with MS.


Assuntos
Idioma , Aplicativos Móveis , Esclerose Múltipla/fisiopatologia , Nomes , Adulto , Fatores Etários , Idoso , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Testes Visuais , Acuidade Visual , Adulto Jovem
7.
J Neuroophthalmol ; 38(2): 202-209, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29750734

RESUMO

: BACKGROUND:: The visual pathways are increasingly recognized as an ideal model to study neurodegeneration in multiple sclerosis (MS). Low-contrast letter acuity (LCLA) and optical coherence tomography (OCT) are validated measures of function and structure in MS. In fact, LCLA was the topic of a recent review by the Multiple Sclerosis Outcome Assessments Consortium (MSOAC) to qualify this visual measure as a primary or secondary clinical trial endpoint with the Food and Drug Administration (FDA) and other regulatory agencies. This review focuses on the use of LCLA and OCT measures as outcomes in clinical trials to date of MS disease-modifying therapies. METHODS: A Pubmed search using the specific key words "optical coherence tomography," "low-contrast letter acuity," "multiple sclerosis," and "clinical trials" was performed. An additional search on the clinicaltrials.gov website with the same key words was used to find registered clinical trials of MS therapies that included these visual outcome measures. RESULTS: As demonstrated by multiple clinical trials, LCLA and OCT measures are sensitive to treatment effects in MS. LCLA has been used in many clinical trials to date, and findings suggest that 7 letters of LCLA at the 2.5% contrast level are meaningful change. Few clinical trials using the benefits of OCT have been performed, although results of observational studies have solidified the ability of OCT to assess change in retinal structure. Continued accrual of clinical trial and observational data is needed to validate the use of OCT in clinical trials, but preliminary work suggests that an intereye difference in retinal nerve fiber layer thickness of 5-6 µm is a clinically meaningful threshold that identifies an optic nerve lesion in MS. CONCLUSIONS: Visual impairment represents a significant component of overall disability in MS. LCLA and OCT enhance the detection of visual pathway injury and can be used as measures of axonal and neuronal integrity. Continued investigation is ongoing to further incorporate these vision-based assessments into clinical trials of MS therapies.


Assuntos
Ensaios Clínicos como Assunto , Esclerose Múltipla/fisiopatologia , Transtornos da Visão/fisiopatologia , Acuidade Visual/fisiologia , Humanos , Esclerose Múltipla/tratamento farmacológico , Fibras Nervosas/patologia , Neurite Óptica/tratamento farmacológico , Neurite Óptica/fisiopatologia , Avaliação de Resultados em Cuidados de Saúde , Células Ganglionares da Retina/patologia , Perfil de Impacto da Doença , Tomografia de Coerência Óptica , Transtornos da Visão/tratamento farmacológico
8.
J Neurol Sci ; 387: 199-204, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29571863

RESUMO

OBJECTIVE: Measures of rapid automatized naming (RAN) have been used for over 50 years to capture vision-based aspects of cognition. The Mobile Universal Lexicon Evaluation System (MULES) is a test of rapid picture naming under investigation for detection of concussion and other neurological disorders. MULES was designed as a series of 54 grouped color photographs (fruits, random objects, animals) that integrates saccades, color perception and contextual object identification. Recent changes to the MULES test have been made to improve ease of use on the athletic sidelines. Originally an 11 × 17-inch single-sided paper, the test has been reduced to a laminated 8.5 × 11-inch double-sided version. We identified performance changes associated with transition to the new, MULES, now sized for the sidelines, and examined MULES on the sideline for sports-related concussion. METHODS: We administered the new laminated MULES to a group of adult office volunteers as well as youth and collegiate athletes during pre-season baseline testing. Athletes with concussion underwent sideline testing after injury. Time scores for the new laminated MULES were compared to those for the larger version (big MULES). RESULTS: Among 501 athletes and office volunteers (age 16 ±â€¯7 years, range 6-59, 29% female), average test times at baseline were 44.4 ±â€¯14.4 s for the new laminated MULES (n = 196) and 46.5 ±â€¯16.3 s for big MULES (n = 248). Both versions were completed by 57 participants, with excellent agreement (p < 0.001, linear regression, accounting for age). Age was a predictor of test times for both MULES versions, with longer times noted for younger participants (p < 0.001). Among 6 athletes with concussion thus far during the fall sports season (median age 15 years, range 11-21) all showed worsening of MULES scores from pre-season baseline (median 4.0 s, range 2.1-16.4). CONCLUSION: The MULES test has been converted to an 11 × 8.5-inch laminated version, with excellent agreement between versions across age groups. Feasibly administered at pre-season and in an office setting, the MULES test shows preliminary evidence of capacity to identify athletes with sports-related concussion.


Assuntos
Traumatismos em Atletas/complicações , Concussão Encefálica/diagnóstico , Concussão Encefálica/etiologia , Nomes , Movimentos Sacádicos/fisiologia , Semântica , Adolescente , Adulto , Traumatismos em Atletas/diagnóstico , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Aplicativos Móveis , Testes Neuropsicológicos , Estimulação Luminosa , Adulto Jovem
9.
Nat Neurosci ; 19(7): 965-72, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27214568

RESUMO

Recognizing predictive relationships is critical for survival, but an understanding of the underlying neural mechanisms remains elusive. In particular, it is unclear how the brain distinguishes predictive relationships from spurious ones when evidence about a relationship is ambiguous, or how it computes predictions given such uncertainty. To better understand this process, we introduced ambiguity into an associative learning task by presenting aversive outcomes both in the presence and in the absence of a predictive cue. Electrophysiological and optogenetic approaches revealed that amygdala neurons directly regulated and tracked the effects of ambiguity on learning. Contrary to established accounts of associative learning, however, interference from competing associations was not required to assess an ambiguous cue-outcome contingency. Instead, animals' behavior was explained by a normative account that evaluates different models of the environment's statistical structure. These findings suggest an alternative view of amygdala circuits in resolving ambiguity during aversive learning.


Assuntos
Tonsila do Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Aprendizagem/fisiologia , Animais , Comportamento Animal , Sinais (Psicologia) , Masculino , Neurônios/fisiologia , Optogenética/métodos , Ratos Sprague-Dawley , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA