Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930212

RESUMO

Silicon carbide has been considered a material for use in the construction of advanced high-temperature nuclear reactors. However, one of the most important design issues for future reactors is the development of structural defects in SiC under a strong irradiation field at high temperatures. To understand how high temperatures affect radiation damage, SiC single crystals were irradiated at room temperature and after being heated to 800 °C with carbon and silicon ions of energies ranging between 0.5 and 21 MeV. The number of displaced atoms and the disorder parameters have been estimated by using the channeling Rutherford backscattering spectrometry. The experimentally determined depth profiles of induced defects at room temperature agree very well with theoretical calculations assuming its proportionality to the electronic and nuclear-stopping power values. On the other hand, a significant reduction in the number of crystal defects was observed for irradiations performed at high temperatures or for samples annealed after irradiation. Additionally, indications of saturation of the crystal defect concentration were observed for higher fluences and the irradiation of previously defected samples.

2.
J Synchrotron Radiat ; 31(Pt 2): 355-362, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363222

RESUMO

In this work, Ce-doped yttria-stabilized zirconia (YSZ) and pure YSZ phases were subjected to irradiation with 14 MeV Au ions. Irradiation studies were performed to simulate long-term structural and microstructural damage due to self-irradiation in YSZ phases hosting alpha-active radioactive species. It was found that both the Ce-doped YSZ and the YSZ phases had a reasonable tolerance to irradiation at high ion fluences and the bulk crystallinity was well preserved. Nevertheless, local microstrain increased in all compounds under study after irradiation, with the Ce-doped phases being less affected than pure YSZ. Doping with cerium ions increased the microstructural stability of YSZ phases through a possible reduction in the mobility of oxygen atoms, which limits the formation of structural defects. Doping of YSZ with tetravalent actinide elements is expected to have a similar effect. Thus, YSZ phases are promising for the safe long-term storage of radioactive elements. Using synchrotron radiation diffraction, measurements of the thin irradiated layers of the Ce-YSZ and YSZ samples were performed in grazing incidence (GI) mode. A corresponding module for measurements in GI mode was developed at the Rossendorf Beamline and relevant technical details for sample alignment and data collection are also presented.

3.
Opt Express ; 30(13): 23463-23474, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36225025

RESUMO

The modulation of structural color through various methods has attracted considerable attention. Herein, a new modulation method for the structural colors in all-dielectric photonic crystals (PCs) using energetic ion beams is proposed. One type of periodic PC and two different defective PCs were experimentally investigated. Under carbon-ion irradiation, the color variation primarily originated from the blue shift of the optical spectra. The varying degrees of both the reflection and transmission structural colors mainly depended on the carbon-ion fluences. Such nanostructures are promising for tunable color filters and double-sided chromatic displays based on PCs.

4.
Nanomaterials (Basel) ; 10(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265978

RESUMO

Three different crystallographic orientations of the wurtzite ZnO structure (labeled as c-plane, a-plane and m-plane) were implanted with Au+ ions using various energies and fluences to form gold nanoparticles (GNPs). The ion implantation process was followed by annealing at 600 °C in an oxygen atmosphere to decrease the number of unwanted defects and improve luminescence properties. With regard to our previous publications, the paper provides a summary of theoretical and experimental results, i.e., both DFT and FLUX simulations, as well as experimental results from TEM, HRTEM, RBS, RBS/C, Raman spectroscopy and photoluminescence. From the results, it follows that in the ZnO structure, implanted gold atoms are located in random interstitial positions -experimentally, the amount of interstitial gold atoms increased with increasing ion implantation fluence. During ion implantation and subsequent annealing, the metal clusters and nanoparticles with sizes from 2 to 20 nm were formed. The crystal structure of the resulting gold was not cubic (confirmed by diffraction patterns), but it had a hexagonal close-packed (hcp) arrangement. The ion implantation of gold leads to the creation of Zn and O interstitial defects and extended defects with distinct character in various crystallographic cuts of ZnO, where significant O-sublattice disordering occurred in m-plane ZnO.

5.
Sci Rep ; 10(1): 14676, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895406

RESUMO

The actinide-containing mineral monazite-(Ce) is a common accessory rock component that bears petrogenetic information, is widely used in geochronology and thermochronology, and is considered as potential host material for immobilisation of radioactive waste. Natural samples of this mineral show merely moderate degrees of radiation damage, despite having sustained high self-irradiation induced by the decay of Th and U (for the sample studied herein 8.9 ± 0.3 × 1019 α/g). This is assigned to low damage-annealing temperature of monazite-(Ce) and "alpha-particle-assisted reconstitution". Here we show that the response of monazite-(Ce) to alpha radiation changes dramatically, depending on the damage state. Only in radiation-damaged monazite-(Ce), 4He ions cause gradual structural restoration. In contrast, its high-temperature annealed (i.e. well crystalline) analogue and synthetic CePO4 experience He-irradiation damage. Alpha-assisted annealing contributes to preventing irradiation-induced amorphisation ("metamictisation") of monazite-(Ce); however, this process is only significant above a certain damage level.

6.
Phys Chem Miner ; 45(9): 855-871, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294066

RESUMO

Lamellae of 1.5 µm thickness, prepared from well-crystallised monazite-(Ce) and zircon samples using the focused-ion-beam technique, were subjected to triple irradiation with 1 MeV Au+ ions (15.6% of the respective total fluence), 4 MeV Au2+ ions (21.9%) and 10 MeV Au3+ ions (62.5%). Total irradiation fluences were varied in the range 4.5 × 1012 - 1.2 × 1014 ions/cm2. The highest fluence resulted in amorphisation of both minerals; all other irradiations (i.e. up to 4.5 × 1013 ions/cm2) resulted in moderate to severe damage. Lamellae were subjected to Raman and laser-induced photoluminescence analysis, in order to provide a means of quantifying irradiation effects using these two micro-spectroscopy techniques. Based on extensive Monte Carlo calculations and subsequent defect-density estimates, irradiation-induced spectroscopic changes are compared with those of naturally self-irradiated samples. The finding that ion irradiation of monazite-(Ce) may cause severe damage or even amorphisation, is in apparent contrast to the general observation that naturally self-irradiated monazite-(Ce) does not become metamict (i.e. irradiation-amorphised), in spite of high self-irradiation doses. This is predominantly assigned to the continuous low-temperature damage annealing undergone by this mineral; other possible causes are discussed. According to cautious estimates, monazite-(Ce) samples of Mesoproterozoic to Cretaceous ages have stored only about 1% of the total damage experienced. In contrast, damage in ion-irradiated and naturally self-irradiated zircon is on the same order; reasons for the observed slight differences are discussed. We may assess that in zircon, alpha decays create significantly less than 103 Frenkel-type defect pairs per event, which is much lower than previous estimates. Amorphisation occurs at defect densities of about 0.10 dpa (displacements per lattice atom).

7.
Sci Rep ; 6: 36785, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27833114

RESUMO

We demonstrate a tunable hybrid Graphene-Nd:YAG cladding waveguide laser exploiting the electro-optic and the Joule heating effects of Graphene. A cladding Nd:YAG waveguide was fabricated by the ion irradiation. The multi-layer graphene were transferred onto the waveguide surface as the saturable absorber to get the Q-switched pulsed laser oscillation in the waveguide. Composing with appropriate electrodes, graphene based capacitance and heater were formed on the surface of the Nd:YAG waveguide. Through electrical control of graphene, the state of the hybrid waveguide laser was turned on or off. And the laser operation of the hybrid waveguide was electrically tuned between the continuous wave laser and the nanosecond pulsed laser.

8.
Opt Express ; 24(15): 16434-9, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27464095

RESUMO

We report on the fabrication of ridge waveguides in KTiOPO4 nonlinear optical crystals through carbon ion irradiation followed by precise diamond blade dicing. The diced side-walls have low roughness, which allows for low propagation loss of ~1dB/cm in fabricated of ridges. The waveguide property investigation has been performed at 1064 nm as well as 532 nm, showing good guidance at both TE and TM polarizations. Based on type II phase matching configuration, efficient second harmonic generation of green light at room temperature has been realized. High conversion efficiencies of ~1.12%W-1 and ~12.4% have been obtained for frequency doubling under the pump of continuous-wave (CW) and pulsed fundamental waves at 1064 nm, respectively.

9.
Sci Rep ; 6: 26176, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27188594

RESUMO

How to enhance the optical nonlinearity of saturable absorption materials is an important question to improve the functionality of various applications ranging from the high power laser to photonic computational devices. We demonstrate the saturable absorption (SA) of VO2 film attributed to the large difference of optical nonlinearities between the two states of the phase-transition materials (VO2). Such VO2 film demonstrated significantly improved performance with saturation intensity higher than other existing ultrathin saturable absorbers by 3 orders due to its unique nonlinear optical mechanisms in the ultrafast phase change process. Owing to this feature, a Q-switched pulsed laser was fabricated in a waveguide platform, which is the first time to achieve picosecond pulse duration and maintain high peak power. Furthermore, the emission of this VO2 waveguide laser can be flexibly switched between the continuous-wave (CW) and pulsed operation regimes by tuning the temperature of the VO2 film, which enables VO2-based miniature laser devices with unique and versatile functions.

10.
Opt Express ; 24(3): 2858-66, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26906854

RESUMO

Owing to their unique properties, graphene-like two dimensional semiconducting materials, including Tungsten Disulfide (WS2) and Black Phosphorous (BP), have attracted increasing interest from basic research to practical applications. Herein, we demonstrated the ultrafast nonlinear saturable absorption response of WS2 and BP films in the waveguide structure. Through fabricating WS2 and BP films by evaporating the solutions on glass wafers. Saturable absorber films were attached onto the end-facet of the waveguide, which therefore constitutes a resonant cavity for the waveguide laser. Under a pump laser at 810 nm, we could obtain a stable Q-switched operation in the waveguide structure. This work indicated the significant potential of WS2 and BP for the ultrafast waveguide laser.

11.
Opt Express ; 23(21): 27612-7, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26480421

RESUMO

We report on a cladding-like waveguide structure in Nd:YAG crystal fabricated by the multiple carbon ion beam irradiation. After the designed multiple irradiation process, the cladding-like waveguide with triple refractive-index layers were constructed in the region near the surface of the crystal. With such a structure, the waveguiding core was compressed and refractive index profile was modified, resulting in a higher light intensity than that of the single ion-beam-irradiated monolayer waveguide. The waveguide lasing at wavelength of 1064 nm was achieved with enhanced performance in the cladding-like structures with both planar and ridge configurations by the optical pump at 810 nm.

12.
Opt Lett ; 40(4): 637-40, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25680169

RESUMO

Using a topological insulator (TI) Bi2Se3 as a saturable absorber, highly stable Q-switched laser pulses were realized in an Nd:YAG ceramic waveguide fabricated by carbon ion irradiation. The laser operation was at a wavelength of 1064 nm, with a repetition rate ranging from 2.7 to 4.7 MHz. The minimum pulsed duration was 46 ns. The maximum output power was up to 168.6 mW corresponding to the pulse energy of 31.3 nJ. This work opens up a practical way for implementation of TI modulated pulsed laser devices in dielectric waveguide platforms.

13.
Opt Express ; 22(8): 9101-6, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24787799

RESUMO

We report on the Q-switched laser operation by the evanescent-field interaction with the graphene layers deposited on a Nd:YAG surface planar waveguide, which was fabricated by the 15 MeV carbon ion irradiation. Based on the simple and compact design of the cavity with saturable-absorber features, the Q-switched pulsed waveguide laser operation was achieved at the wavelength of 1064 nm through the interaction between the graphene layer and the evanescent-field of the waveguide mode. The maximum output pulse repetition rate was ~29 kHz with the pulse duration of ~9.8 µs.

14.
Opt Express ; 22(3): 3572-7, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663647

RESUMO

We demonstrate the lasing performance in the Nd:YAG ceramic channel waveguide produced by the carbon ion irradiation, including the continuous-wave (cw) and graphene Q-switched configurations. The highest slope efficiency of 56% and the lowest threshold of 40 mW have been obtained for the cw waveguide laser. With graphene as a saturable absorber, the Q-switched laser produces stable pulses with 57 ns pulse duration and 77 nJ pulse energy, respectively. Under the variation of the pumping power, the repetition of the pulse laser could be modified from 1.5 MHz to 4.1 MHz.

15.
Appl Opt ; 53(2): 195-9, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24514049

RESUMO

We report on the fabrication of channel waveguides in Nd:YAG crystals, using swift C5⁺ ion irradiation with ion energy of 15 MeV and fluence at 5×10¹5 ions/cm². A laser-cut shadow mask of a number of open stripes with varied width was covered on the sample surface during the ion irradiation. Channel waveguides were formed in the Nd:YAG crystal due to the refractive index increase along the ion trajectory. Room temperature waveguide laser oscillations at 1064 nm have been observed under 808 nm optical pumping, with laser slope efficiency at 38% and a maximum output power of 36 mW.

16.
Opt Express ; 21(12): 13992-7, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23787589

RESUMO

A high-gain optical waveguide amplifier has been realized in a channel waveguide platform of Nd:YAG ceramic produced by swift carbon ion irradiation with metal masking. The waveguide is single mode at wavelength of 810 and 1064 nm, and with the enhanced fluorescence intensity at around 1064 nm due to the Nd(3+) ion emissions. In conjunction with the low propagation loss of the waveguide, about 26.3 dB/cm of the small signal gain at 1064 nm is achieved with an 18 ns pulse laser as the seeder under the 810-nm laser excitation. This work suggests the carbon ion irradiated Nd:YAG waveguides could serve as efficient integrated amplifiers for the signal amplification.


Assuntos
Amplificadores Eletrônicos , Cerâmica/química , Cerâmica/efeitos da radiação , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Íons Pesados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA