Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biochem ; 122(5): 494-506, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33399248

RESUMO

The α-isozyme of diacylglycerol kinase (DGK) enhances cancer cell proliferation and, conversely, it promotes the nonresponsive immune state known as T-cell anergy. Moreover, a DGKα-selective inhibitor, CU-3, induced cell death in cancer-derived cells and simultaneously enhanced T-cell interleukin-2 production. In addition to DGKα, DGKζ is also known to induce T-cell anergy. In the present study, we examined whether combined inhibition/silencing of DGKα and DGKζ synergistically enhanced T-cell activity. Combined treatment with CU-3 or DGKα-small interfering RNA (siRNA) and DGKζ-siRNA more potently enhanced T-cell receptor-crosslink-dependent interleukin-2 production in Jurkat T cells than treatment with either alone. Intriguingly, in addition to activating T cells, dual inhibition/silencing of DGKα and DGKζ synergistically reduced viability and increased caspase 3/7 activity in AKI melanoma cells. Taken together, these results indicate that combined inhibition/silencing of DGKα and DGKζ simultaneously and synergistically enhances interleukin-2 production in T cells and induces cell death in melanoma. Therefore, dual inhibition/silencing of these DGK isozymes represents an ideal therapy that potently attenuates cancer cell proliferation and simultaneously enhances immune responses that impact anticancer immunity.


Assuntos
Diacilglicerol Quinase/metabolismo , Interleucina-2/metabolismo , Linfócitos T/metabolismo , Apoptose/fisiologia , Western Blotting , Morte Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Diacilglicerol Quinase/genética , Humanos , Células Jurkat/metabolismo , Interferência de RNA
2.
Biochem Biophys Res Commun ; 525(4): 1054-1060, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32184022

RESUMO

Diacylglycerol kinase (DGK) α enhances the proliferation of melanoma and hepatocellular carcinoma cells whereas, in contrast, DGKα induces a nonproliferative state in T cells. We previously found that DGKα produces palmitic acid (16:0)-containing PA species, such as 16:0/16:0- and 16:0/18:0-PA, in melanoma cells under serum-starved (nonproliferative) conditions. In the present study, we identified the PA species generated by DGKα in T cells under serum-starved (nonproliferative) conditions. We found that serum starvation markedly increased the levels of many PA species, such as 14:1/16:1-, 14:0/16:1-, 14:0/16:0-, 16:1/16:2-, 16:1/16:1-, 16:0/16:1-, 16:0/16:0-, 16:1/18:2-, 16:1/18:1-, 16:0/18:1-, 16:0/18:0-, 18:1/18:2-, 18:1/18:1- and 18:0/18:1-PA, in Jurkat T cells. In lysates from serum-starved Jurkat T cells, DGKα activity, which was Ca2+-dependent and sensitive to a DGKα-specific inhibitor (CU-3), was substantially increased, indicating its activation. Moreover, CU-3 (1-10 µM) significantly reduced the amounts of palmitic acid- and/or palmitoleic acid (16:1)-containing PA species, such as 14:1/16:1-, 14:0/16:1-, 14:0/16:0-, 16:1/16:2-, 16:1/16:1-, 16:0/16:1-, 16:0/16:0-, 16:0/18:1- and 16:0/18:0-PA, which were increased by serum starvation. These results indicate that DGKα generates different PA species in starved melanoma cells (palmitic acid-containing PA species) and T cells (palmitic acid- and/or palmitoleic acid (16:1)-containing PA species). Therefore, the differences in the PA molecular species may account for the opposing functions of DGKα in melanoma and T cells.


Assuntos
Diacilglicerol Quinase/metabolismo , Ácidos Graxos Monoinsaturados/química , Ácido Palmítico/química , Ácidos Fosfatídicos/química , Linfócitos T/enzimologia , Cálcio/metabolismo , Proliferação de Células , Cromatografia Líquida , Diacilglicerol Quinase/antagonistas & inibidores , Ácidos Graxos Monoinsaturados/metabolismo , Humanos , Células Jurkat , Melanoma/química , Melanoma/enzimologia , Melanoma/metabolismo , Ácido Palmítico/metabolismo , Ácidos Fosfatídicos/metabolismo , Rodanina/análogos & derivados , Rodanina/farmacologia , Sulfonamidas/farmacologia , Linfócitos T/química , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Espectrometria de Massas em Tandem
3.
J Cell Biochem ; 120(6): 10043-10056, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30536880

RESUMO

Diacylglycerol (DG) kinase (DGK), which phosphorylates DG to generate phosphatidic acid (PA), consists of ten isozymes (α-к). Recently, we identified a novel small molecule inhibitor, CU-3, that selectively inhibits the activity of the α isozyme. In addition, we newly obtained Compound A, which selectively and strongly inhibits type I DGKs (α, ß, and γ). In the present study, we demonstrated that both CU-3 and Compound A induced apoptosis (caspase 3/7 activity and DNA fragmentation) and viability reduction of AKI melanoma cells. Liquid chromatography-mass spectrometry revealed that the production of 32:0- and 34:0-PA species was commonly attenuated by CU-3 and Compound A, suggesting that lower levels of these PA molecular species are involved in the apoptosis induction and viability reduction of AKI cells. We determined the effects of the DGKα inhibitors on several other cancer cell lines derived from refractory cancers. In addition to melanoma, the DGKα inhibitors enhanced caspase 3/7 activity and reduced the viability of hepatocellular carcinoma, glioblastoma, and pancreatic cancer cells, but not breast adenocarcinoma cells. Interestingly, Western blot analysis indicated that the DGKα expression levels were positively correlated with the sensitivity to the DGK inhibitors. Because both CU-3 and Compound A induced interleukin-2 production by T cells, it is believed that these two compounds can enhance cancer immunity. Taken together, our results suggest that DGKα inhibitors are promising anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diacilglicerol Quinase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Animais , Antineoplásicos/química , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Diacilglicerol Quinase/metabolismo , Inibidores Enzimáticos/química , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Interleucina-2/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ácidos Fosfatídicos/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
4.
Biochem Biophys Res Commun ; 504(1): 54-60, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30170729

RESUMO

The ß-isoform of diacylglycerol kinase (DGK) localizes predominantly to neurons and induces neurite outgrowth and spine formation. However, the detailed molecular mechanisms underlying the functions of DGKß remain elusive. During the course of studies on other DGK isozymes, we unexpectedly found that the overexpression of wild-type DGKß in COS-7 cells markedly induced filopodium formation. Because filopodium formation is closely related to neurite outgrowth and spine formation, we constructed various DGKß mutants and compared their abilities to induce filopodium formation in order to elucidate the structure-function relationships of DGKß. We found that the C-terminal, C1 and catalytic domains and catalytic activity were indispensable for filopodium formation, but the recoverin homology domain and EF-hand motifs were not. Moreover, the extent of plasma membrane localization and F-actin colocalization were positively correlated with filopodium formation. Intriguingly, DGKß selectively interacted and colocalized at the plasma membrane with a Rac1-GTPase-activating protein, ß2-chimaerin, which is an inducer of filopodia; it also interacted, to lesser extent, with α2-chimaerin, but not with α1- or ß1-chimaerin. Moreover, DGKß enhanced the plasma membrane localization of ß2-chimaerin. These results suggest that DGKß plays an important role in neurite outgrowth and spine formation in neurons via its ability to induce filopodium formation.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Lipase Lipoproteica/metabolismo , Proteínas de Neoplasias/metabolismo , Pseudópodes/fisiologia , Animais , Células COS , Domínio Catalítico , Chlorocebus aethiops , Lipase Lipoproteica/química , Lipase Lipoproteica/genética , Mutação , Domínios Proteicos , Pseudópodes/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA