RESUMO
A high-performance and affordable peanut shell-derived biochar was employed for the efficient removal of Rhodamine B (RhB) from aqueous solutions. The properties of peanut shell biochar (PSB) were investigated through Fourier transform infrared (FTIR) spectroscopy and Brunauer-Emmett-Teller surface area measurements. The FTIR analysis revealed numerous active sites and functional groups for the binding of dye molecules, while the BET surface area was determined to be 351.11 m2g-1. Four different isotherms and kinetic models were applied to determine the equilibrium adsorption of RhB, and the results indicated that the Freundlich isotherm was the most appropriate model. A maximum dye removal rate of 94.0% occurred at a pH of 3 with an adsorbent dose of 0.325 g L-1. The prepared adsorbent showed excellent sorbent behaviour and can be reused multiple times after regeneration, with the surface area decreasing from 351.11 m2g-1 to 140.13 m2g-1 after the third cycle. The negative Gibbs free energy ΔGo at all applied temperatures suggested that spontaneous adsorption occurred and RhB adsorption on the PSB was found exothermic, as evidenced by the negative value of ΔHo. The regenerated PSB can be utilized as an efficient, environmentally friendly, and cost-effective sorbent for the removal of dyes at temperatures lower than ambient temperature, providing both technical and financial advantages for sustainable environmental management.
Assuntos
Arachis , Carvão Vegetal , Rodaminas , Poluentes Químicos da Água , Purificação da Água , Rodaminas/química , Carvão Vegetal/química , Arachis/química , Adsorção , Poluentes Químicos da Água/química , Cinética , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , TermodinâmicaRESUMO
For polyethylene terephthalate (PET) bottles, a material used for food packaging, light transmission and mechanical performance, particularly environmental stress cracking (ESC), are essential characteristics. For this purpose, following extrusion of PET/CaO granules, preforms were manufactured using the injection technique, and bottles were produced by a stretch-blow-molding process. With incorporation of calcium oxide (CaO), light transmittance increased by around 25%, and ESC went from 0.3 to 11 min. In addition, whereas acetaldehyde (AA) and carboxylic acid (COOH) decomposition values rose with increasing CaO content, diethylene glycol and isophthalic acid values did not significantly change. Moreover, the maximum crystallization temperature and crystallinity both exhibited an upward trend with the CaO content.
RESUMO
Carbon nanodots have drawn a great deal of attention due to their green and expedient opportunities in biological and chemical sciences. Their high fluorescence capabilities and low toxicity for living cells and tissues make them excellent imaging agents. In addition, they have a fluorimetric response against inorganic and organic species. Boron-doped carbon nanodots (B-CDs) with high fluorescence yield were produced from phenylboronic acid and glutamine as boron and carbon sources, respectively, by a hydrothermal method. First, the effects of the temperature on their fluorescence yield and the structural characteristics of B-CDs were investigated. Second, their cytotoxicity and cell death and proliferation behaviors were examined. The cytotoxicity was evaluated by the MTT assay. The cellular properties were evaluated with the distribution of caspase 3, Ki67, lamin B1, P16, and cytochrome c after the indirect immunoperoxidase technique. After the MTT assay, 1:1 dilution of all applicants for 24 h was used in the study. After immunohistochemical analyses, the application of B-CDs synthesized at 230 °C did not change control cell (Vero) proliferation, and also apoptosis was not triggered. Colo 320 CD133+ and CD133- cell-triggered apoptosis and cellular senescence were found to be synthesis temperature dependent. In addition, Colo 320 CD133- cells were affected relatively more than CD133+ cells from B-CDs. While B-CDs did not affect the control cells, the colon cancer stem cells (Colo 320 CD133+) were affected in a time-dependent manner. Therefore, the use of the synthesized B-CD product may be an alternative method for controlling or eliminating cancer stem cells in the tumor tissue.
RESUMO
Non-metal cation (NMC) pentaborate structures, in which some amino acids (valine, leucine, isoleucine, and threonine) were used as cations, were synthesized. The structural characterization of molecules was carried out by elemental analysis, FT-IR, mass, 11B-NMR, and thermal analysis (TGA/DTA) methods. The hydrogen storage capacity of molecules was also calculated by taking experimental results into consideration. The FT-IR spectra support the similarity of structures. The characteristic peaks attributable to pentaborate rings and amino acids were observed. When thermal analysis data were examined, it was observed that pentaborate salts gave similar degradation steps and degradation products. As a final degradation product of all thermal analysis experiments, a glassy form of B2O3 was observed. The valine pentaborate is the most thermally stable. Also, the amounts of hydrate water outside the coordination sphere of the compounds were determined by thermal analysis curves. The peaks of boric acid, triborate, and pentaborate structures were obtained in ppm with the 11B-NMR results of synthesized pentaborate compounds. With powder X-ray spectroscopy, all structures were found to be crystalline but not suitable for single-crystal X-ray analysis. The molecular cavities of the compounds detected by BET were found to be 3.286, 1.873, 2.309, and 1.860 g/cm3, respectively. A low number of molecular cavities can be interpreted in several existing hydrogen bonds in structures. The hydrogen storage capacities of the molecules were found to be in the range of 0.04 to 0.07% by mass.