Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
J Biotechnol ; 374: 31-37, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37481211

RESUMO

Avian Influenza, the most studied virus, is of high concern due to its zoonotic pandemic potential. In recent years, several influenza vaccines have been used with the broad goal of managing and in certain cases, eliminating the disease. The matrix 2 extracellular domain (M2e), is one of the key targets of the universal influenza vaccine, a liner peptide that is conserved throughout all influenza A subtypes virus. Many recombinant influenza proteins have been expressed in yeast and plants for vaccine development. A remarkable development has been made in the field of biotechnology to explore the potential of microalga as an expression host. In this study, we designed a fusion gene code for M2e peptide and CTB protein as M2e's natural form has a low level of immunogenicity. The fusion gene was cloned in the Chloroplast transformation vector pSRSapI and expressed in the TN72 mutant strain of Chlamydomonas reinhardii. The expression of the targeted protein was confirmed by ECL western blot analysis. A GM1-ELISA was carried out to detect the affinity of fusion protein for GM1 monosialoganglioside and the significant P-value is lower than 0.05. Immunogenicity assay on chicken detected the anti-M2e bodies in chicken serum. This study gives evidence of therapeutic protein production through algae chloroplast and a stable, selection free and low cost oral delivery for universal vaccine against influenza A virus.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Animais , Camundongos , Humanos , Influenza Humana/prevenção & controle , Vacinas de Plantas Comestíveis , Gangliosídeo G(M1) , Vacinas contra Influenza/genética , Proteínas Recombinantes , Peptídeos , Proteínas Recombinantes de Fusão/genética , Camundongos Endogâmicos BALB C , Anticorpos Antivirais
3.
AMB Express ; 13(1): 23, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36840830

RESUMO

Green algae, Chlamydomonas reinhardtii, with low cultivation cost, absence of endotoxins and insusceptibility to human pathogens is emerging as a potential system for the future production of recombinant proteins. The recent development of molecular tools enabling recombinant protein expression in algae chloroplast has provided new research and advance opportunities for developing low-cost therapeutic proteins. In the present study, algae chloroplast expression system was evaluated for the recombinant production of an anti-cancerous therapeutic protein, Interleukin 29 (IL29). The IL29 gene was cloned into algae chloroplast expression vector (pSRSapI). After the transformation, the positive clones were screened for homoplasmy and the presence of the IL29 gene by spot test and PCR analysis, respectively. The expressed SDS-PAGE and western blotting assay characterized IL-29. The algae expressed IL-29 was biologically active in an anti-proliferating bioassay using HepG2 cells. The results suggest that the Chlamydomonas reinhardtii expression system is convenient, low-cost, eco-friendly, and safe to express IL29.

4.
J Biotechnol ; 360: 182-191, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36368638

RESUMO

As a part of the search for environment-friendly biocontrol of mosquito-borne diseases, mosquito larvicidal potential of Bacillus thuringiensis subsp. jegathesan (Btj) Cry toxins is explored for toxins with increased toxicity. Safe delivery of the Cry toxins to mosquito larvae in aquatic habitats is a major concern. This is because in water bodies Bacillus thuringiensis (Bt) protein formulations degrade by sunlight, can sink down and get adsorbed by the silt. So, because of its short persistence the toxin requires repeated applications at the given site. Therefore, an upcoming approach is incorporating the Bt toxins in Chlamydomonas reinhardtii (C. reinhardtii) because it is a food of mosquito larvae in water and its molecular toolkit is well investigated for foreign gene expression. The present work aimed to compare the feasibility of C. reinhardtii chloroplast and nuclear compartments for stable expression of Cry11Ba toxin as this is the most toxic Btj protein to date, lethal to different mosquito species. With chloroplast expression of cry11Ba gene we were able to generate marker-free C. reinhardtii strain stably expressing Cry11Ba protein and demonstrating mortality against Aedes aegypti larvae. Moreover, for nuclear expression linking the cry11Ba gene to zeocin via foot and mouth disease virus (FMDV) 2A peptide resulted in the selection of transformants with increased cry11Ba mRNA expression levels by semi-quantitative reverse transcriptase PCR. Obtained results lay a foundation for the C. reinhardtii chloroplast expression system to be used for genetic engineering with Bt toxins which possess enhanced toxicity.


Assuntos
Chlamydomonas reinhardtii , Culicidae , Animais , Chlamydomonas reinhardtii/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA