Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Front Med (Lausanne) ; 11: 1380405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741771

RESUMO

Introduction: Non-melanoma skin cancer comprising Basal cell carcinoma (BCC), Squamous cell carcinoma (SCC), and Intraepidermal carcinoma (IEC) has the highest incidence rate among skin cancers. Intelligent decision support systems may address the issue of the limited number of subject experts and help in mitigating the parity of health services between urban centers and remote areas. Method: In this research, we propose a transformer-based model for the segmentation of histopathology images not only into inflammation and cancers such as BCC, SCC, and IEC but also to identify skin tissues and boundaries that are important in decision-making. Accurate segmentation of these tissue types will eventually lead to accurate detection and classification of non-melanoma skin cancer. The segmentation according to tissue types and their visual representation before classification enhances the trust of pathologists and doctors being relatable to how most pathologists approach this problem. The visualization of the confidence of the model in its prediction through uncertainty maps is also what distinguishes this study from most deep learning methods. Results: The evaluation of proposed system is carried out using publicly available dataset. The application of our proposed segmentation system demonstrated good performance with an F1 score of 0.908, mean intersection over union (mIoU) of 0.653, and average accuracy of 83.1%, advocating that the system can be used as a decision support system successfully and has the potential of subsequently maturing into a fully automated system. Discussion: This study is an attempt to automate the segmentation of the most occurring non-melanoma skin cancer using a transformer-based deep learning technique applied to histopathology skin images. Highly accurate segmentation and visual representation of histopathology images according to tissue types by the proposed system implies that the system can be used for skin-related routine pathology tasks including cancer and other anomaly detection, their classification, and measurement of surgical margins in the case of cancer cases.

2.
Data Brief ; 52: 110069, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38304386

RESUMO

Unmanned aerial vehicles (UAV) rely on a variety of sensors to perceive and navigate their airborne environment with precision. The autopilot software interprets this sensory data, acting as the control mechanism for autonomous flights. As UAVs are exposed to physical environment, they are vulnerable to potential impairments in their sensory mechanism. Their real-time interactions with the actual atmosphere make them susceptible to cyber exploitations as well, where sensory data alterations through counterfeit wireless signals pose a significant threat. In this context, sensor failures can result into unsafe flight conditions, as the fault handling logic may fail to anticipate the context of the issue, allowing autopilot to execute operations without necessary adjustments. Untimely control of sensor failures can result in mid-air collisions or crashes. To address these challenges, we created Biomisa Arducopter Sensory Critique (BASiC) dataset, a state-of-the-art resource for UAV sensor failure analysis. The BASiC dataset comprises 70 autonomous flight data, spanning over 7 hours. It encompasses 3+ hours of (each) pre-failure and post-failure data, along with 1+ hour of no-failure data. We selected the ArduPilot platform as our demonstration aerial vehicle to conduct the experiments. By engineering Software in the Loop (SITL) parameters, we effectively executed sensor failure test simulations. Our dataset incorporates six representative sensors failures which are critical to UAV operations: global positioning system (GPS) for precise aerial positioning, remote control for communication with the ground control station (GCS), accelerometer for measuring linear acceleration, gyroscope for rotational acceleration measurement, compass providing heading information, and barometer for maintaining flight height based on atmospheric pressure data. The availability of the BASiC dataset will benefit the research community, empowering researchers to explore and experiment with state-of-the-art deep learning models by tailoring them for time series signal analysis. It may also contribute in enhancing the safety and reliability of mission-critical autonomous UAV flights.

3.
Sci Rep ; 14(1): 2335, 2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282056

RESUMO

Staining is a crucial step in histopathology that prepares tissue sections for microscopic examination. Hematoxylin and eosin (H&E) staining, also known as basic or routine staining, is used in 80% of histopathology slides worldwide. To enhance the histopathology workflow, recent research has focused on integrating generative artificial intelligence and deep learning models. These models have the potential to improve staining accuracy, reduce staining time, and minimize the use of hazardous chemicals, making histopathology a safer and more efficient field. In this study, we introduce a novel three-stage, dual contrastive learning-based, image-to-image generative (DCLGAN) model for virtually applying an "H&E stain" to unstained skin tissue images. The proposed model utilizes a unique learning setting comprising two pairs of generators and discriminators. By employing contrastive learning, our model maximizes the mutual information between traditional H&E-stained and virtually stained H&E patches. Our dataset consists of pairs of unstained and H&E-stained images, scanned with a brightfield microscope at 20 × magnification, providing a comprehensive set of training and testing images for evaluating the efficacy of our proposed model. Two metrics, Fréchet Inception Distance (FID) and Kernel Inception Distance (KID), were used to quantitatively evaluate virtual stained slides. Our analysis revealed that the average FID score between virtually stained and H&E-stained images (80.47) was considerably lower than that between unstained and virtually stained slides (342.01), and unstained and H&E stained (320.4) indicating a similarity virtual and H&E stains. Similarly, the mean KID score between H&E stained and virtually stained images (0.022) was significantly lower than the mean KID score between unstained and H&E stained (0.28) or unstained and virtually stained (0.31) images. In addition, a group of experienced dermatopathologists evaluated traditional and virtually stained images and demonstrated an average agreement of 78.8% and 90.2% for paired and single virtual stained image evaluations, respectively. Our study demonstrates that the proposed three-stage dual contrastive learning-based image-to-image generative model is effective in generating virtual stained images, as indicated by quantified parameters and grader evaluations. In addition, our findings suggest that GAN models have the potential to replace traditional H&E staining, which can reduce both time and environmental impact. This study highlights the promise of virtual staining as a viable alternative to traditional staining techniques in histopathology.


Assuntos
Inteligência Artificial , Benchmarking , Amarelo de Eosina-(YS) , Substâncias Perigosas , Microscopia
4.
Pak J Med Sci ; 39(6): 1887-1890, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936725

RESUMO

Pleomorphic adenoma is a benign tumor of the salivary glands. It commonly occurs in the parotid gland, palate, upper lip and cheek. The authors present a rare case of a pleomorphic adenoma of the lower lip in a 30 years old female admitted on 20th of July, 2022 at Akbar Niazi Teaching Hospital, Islamabad with a complaint of painless, slightly itchy swelling on the lower lip for the last four months. Careful history and examination revealed a swelling of the lower lip which had gradually increased in size but was static for the last three months. As the patient complained of cosmetic and social inconvenience, it was surgically managed. Any post-operative complications were ruled out and the patient was sent home in a good condition. Much research is warranted to know the exact etiopathogenesis and appropriate management of pleomorphic adenoma of the lower lip.

5.
Diagnostics (Basel) ; 13(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37443625

RESUMO

Diabetic retinopathy is one of the abnormalities of the retina in which a diabetic patient suffers from severe vision loss due to an affected retina. Proliferative diabetic retinopathy (PDR) is the final and most critical stage of diabetic retinopathy. Abnormal and fragile blood vessels start to grow on the surface of the retina at this stage. It causes retinal detachment, which may lead to complete blindness in severe cases. In this paper, a novel method is proposed for the detection and grading of neovascularization. The proposed system first performs pre-processing on input retinal images to enhance the vascular pattern, followed by blood vessel segmentation and optic disc localization. Then various features are tested on the candidate regions with different thresholds. In this way, positive and negative advanced diabetic retinopathy cases are separated. Optic disc coordinates are applied for the grading of neovascularization as NVD or NVE. The proposed algorithm improves the quality of automated diagnostic systems by eliminating normal blood vessels and exudates that might cause hindrances in accurate disease detection, thus resulting in more accurate detection of abnormal blood vessels. The evaluation of the proposed system has been carried out using performance parameters such as sensitivity, specificity, accuracy, and positive predictive value (PPV) on a publicly available standard retinal image database and one of the locally available databases. The proposed algorithm gives an accuracy of 98.5% and PPV of 99.8% on MESSIDOR and an accuracy of 96.5% and PPV of 100% on the local database.

6.
Comput Biol Med ; 156: 106668, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36863192

RESUMO

Artificial Intelligence (AI) techniques of deep learning have revolutionized the disease diagnosis with their outstanding image classification performance. In spite of the outstanding results, the widespread adoption of these techniques in clinical practice is still taking place at a moderate pace. One of the major hindrance is that a trained Deep Neural Networks (DNN) model provides a prediction, but questions about why and how that prediction was made remain unanswered. This linkage is of utmost importance for the regulated healthcare domain to increase the trust in the automated diagnosis system by the practitioners, patients and other stakeholders. The application of deep learning for medical imaging has to be interpreted with caution due to the health and safety concerns similar to blame attribution in the case of an accident involving autonomous cars. The consequences of both a false positive and false negative cases are far reaching for patients' welfare and cannot be ignored. This is exacerbated by the fact that the state-of-the-art deep learning algorithms comprise of complex interconnected structures, millions of parameters, and a 'black box' nature, offering little understanding of their inner working unlike the traditional machine learning algorithms. Explainable AI (XAI) techniques help to understand model predictions which help develop trust in the system, accelerate the disease diagnosis, and meet adherence to regulatory requirements. This survey provides a comprehensive review of the promising field of XAI for biomedical imaging diagnostics. We also provide a categorization of the XAI techniques, discuss the open challenges, and provide future directions for XAI which would be of interest to clinicians, regulators and model developers.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Humanos , Diagnóstico por Imagem , Algoritmos , Aprendizado de Máquina
7.
Biomed Signal Process Control ; 85: 104855, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36987448

RESUMO

Chest X-rays (CXR) are the most commonly used imaging methodology in radiology to diagnose pulmonary diseases with close to 2 billion CXRs taken every year. The recent upsurge of COVID-19 and its variants accompanied by pneumonia and tuberculosis can be fatal in some cases and lives could be saved through early detection and appropriate intervention for the advanced cases. Thus CXRs can be used for an automated severity grading of pulmonary diseases that can aid radiologists in making better and informed diagnoses. In this article, we propose a single framework for disease classification and severity scoring produced by segmenting the lungs into six regions. We present a modified progressive learning technique in which the amount of augmentations at each step is capped. Our base network in the framework is first trained using modified progressive learning and can then be tweaked for new data sets. Furthermore, the segmentation task makes use of an attention map generated within and by the network itself. This attention mechanism allows to achieve segmentation results that are on par with networks having an order of magnitude or more parameters. We also propose severity score grading for 4 thoracic diseases that can provide a single-digit score corresponding to the spread of opacity in different lung segments with the help of radiologists. The proposed framework is evaluated using the BRAX data set for segmentation and classification into six classes with severity grading for a subset of the classes. On the BRAX validation data set, we achieve F1 scores of 0.924 and 0.939 without and with fine-tuning, respectively. A mean matching score of 80.8% is obtained for severity score grading while an average area under receiver operating characteristic curve of 0.88 is achieved for classification.

8.
ACS Omega ; 8(7): 6638-6649, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844569

RESUMO

Acyl-amide is extensively used as functional group and is a superior contender for the design of MOFs with the guest accessible functional organic sites. A novel acyl-amide-containing tetracarboxylate ligand, bis(3,5-dicarboxy-pheny1)terephthalamide, has been successfully synthesized. The H4L linker has some fascinating attributes as follows: (i) four carboxylate moieties as the coordination sites confirm affluent coordination approaches to figure a diversity of structure; (ii) two acyl-amide groups as the guest interaction sites can engender guest molecules integrated into the MOF networks through H-bonding interfaces and have a possibility to act as functional organic sites for the condensation reaction. A mesoporous MOF ([Cu2(L)(H2O)3]·4DMF·6H2O) has been prepared in order to produce the amide FOS within the MOF, which will work as guest accessible sites. The prepared MOF was characterized by CHN analysis, PXRD, FTIR spectroscopy, and SEM analysis. The MOF showed superior catalytic activity for Knoevenagel condensation. The catalytic system endures a broad variety of the functional groups and presents high to modest yields of aldehydes containing electron withdrawing groups (4-chloro, 4-fluoro, 4-nitro), offering a yield > 98 in less reaction time as compared to aldehydes with electron donationg groups (4-methyl). The amide decorated MOF (LOCOM-1-) as a heterogeneous catalyst can be simply recovered by centrifugation and recycled again without a flagrant loss of its catalytic efficiency.

9.
PLoS One ; 18(1): e0280352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36649367

RESUMO

Following its initial identification on December 31, 2019, COVID-19 quickly spread around the world as a pandemic claiming more than six million lives. An early diagnosis with appropriate intervention can help prevent deaths and serious illness as the distinguishing symptoms that set COVID-19 apart from pneumonia and influenza frequently don't show up until after the patient has already suffered significant damage. A chest X-ray (CXR), one of many imaging modalities that are useful for detection and one of the most used, offers a non-invasive method of detection. The CXR image analysis can also reveal additional disorders, such as pneumonia, which show up as anomalies in the lungs. Thus these CXRs can be used for automated grading aiding the doctors in making a better diagnosis. In order to classify a CXR image into the Negative for Pneumonia, Typical, Indeterminate, and Atypical, we used the publicly available CXR image competition dataset SIIM-FISABIO-RSNA COVID-19 from Kaggle. The suggested architecture employed an ensemble of EfficientNetv2-L for classification, which was trained via transfer learning from the initialised weights of ImageNet21K on various subsets of data (Code for the proposed methodology is available at: https://github.com/asadkhan1221/siim-covid19.git). To identify and localise opacities, an ensemble of YOLO was combined using Weighted Boxes Fusion (WBF). Significant generalisability gains were made possible by the suggested technique's addition of classification auxiliary heads to the CNN backbone. The suggested method improved further by utilising test time augmentation for both classifiers and localizers. The results for Mean Average Precision score show that the proposed deep learning model achieves 0.617 and 0.609 on public and private sets respectively and these are comparable to other techniques for the Kaggle dataset.


Assuntos
COVID-19 , Pneumonia Viral , Humanos , COVID-19/diagnóstico por imagem , Raios X , Pneumonia Viral/diagnóstico por imagem , Tórax/diagnóstico por imagem , Redes Neurais de Computação
10.
Chemosphere ; 313: 137332, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427576

RESUMO

Conventional chemotherapy poses toxic effects to healthy tissues. A therapeutic system is thus required that can administer, distribute, metabolize, and excrete medicine from human body without damaging healthy cells. This is possible by designing a therapeutic system that can release drug at specific target tissue. In current work, novel chitosan (CS) based polymeric nanoparticles (PNPs) containing N-isopropyl acrylamide (NIPAAM) and 2-(di-isopropyl amino) ethyl methacrylate (DPA) are designed. The presence of available functional groups i.e. OH- (3262 cm-1), -NH2 (1542 cm-1), and CO (1642 cm-1), was confirmed by Fourier Transform Infra-red Spectrophotometry (FTIR). The surface morphology and average particle size (175 nm) was determined through Scanning Electron Microscope (SEM). X-Ray Diffractometry (XRD) studies confirmed the amorphous nature and excellent thermal stability of PNPs up to 100 °C with only 2.69% mass loss was confirmed by Thermogravimetric analysis (TGA). The pH sensitivity of such PNPs for release of encapsulated doxorubicin at malignant site was investigated. The encapsulation efficiency of PNPs was 89% (4.45 mg/5 mg) for doxorubicin (a chemotherapeutic) measured by using UV-Vis Spectrophotometer. The drug release profile of loaded PNPs was 88% (3.92 mg/4.45 mg) at pH 5.3, in 96 h. PNPs with varying DPA concentration can effectively be used to deliver chemotherapeutic agents with high efficacy.


Assuntos
Quitosana , Nanopartículas , Neoplasias , Humanos , Polímeros , Doxorrubicina , Liberação Controlada de Fármacos , Portadores de Fármacos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Microambiente Tumoral
11.
Sensors (Basel) ; 22(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36502183

RESUMO

Emotion charting using multimodal signals has gained great demand for stroke-affected patients, for psychiatrists while examining patients, and for neuromarketing applications. Multimodal signals for emotion charting include electrocardiogram (ECG) signals, electroencephalogram (EEG) signals, and galvanic skin response (GSR) signals. EEG, ECG, and GSR are also known as physiological signals, which can be used for identification of human emotions. Due to the unbiased nature of physiological signals, this field has become a great motivation in recent research as physiological signals are generated autonomously from human central nervous system. Researchers have developed multiple methods for the classification of these signals for emotion detection. However, due to the non-linear nature of these signals and the inclusion of noise, while recording, accurate classification of physiological signals is a challenge for emotion charting. Valence and arousal are two important states for emotion detection; therefore, this paper presents a novel ensemble learning method based on deep learning for the classification of four different emotional states including high valence and high arousal (HVHA), low valence and low arousal (LVLA), high valence and low arousal (HVLA) and low valence high arousal (LVHA). In the proposed method, multimodal signals (EEG, ECG, and GSR) are preprocessed using bandpass filtering and independent components analysis (ICA) for noise removal in EEG signals followed by discrete wavelet transform for time domain to frequency domain conversion. Discrete wavelet transform results in spectrograms of the physiological signal and then features are extracted using stacked autoencoders from those spectrograms. A feature vector is obtained from the bottleneck layer of the autoencoder and is fed to three classifiers SVM (support vector machine), RF (random forest), and LSTM (long short-term memory) followed by majority voting as ensemble classification. The proposed system is trained and tested on the AMIGOS dataset with k-fold cross-validation. The proposed system obtained the highest accuracy of 94.5% and shows improved results of the proposed method compared with other state-of-the-art methods.


Assuntos
Nível de Alerta , Emoções , Humanos , Emoções/fisiologia , Nível de Alerta/fisiologia , Análise de Ondaletas , Eletroencefalografia/métodos , Máquina de Vetores de Suporte
12.
Diagnostics (Basel) ; 12(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36553091

RESUMO

Diabetic Retinopathy affects one-third of all diabetic patients and may cause vision impairment. It has four stages of progression, i.e., mild non-proliferative, moderate non-proliferative, severe non-proliferative and proliferative Diabetic Retinopathy. The disease has no noticeable symptoms at early stages and may lead to chronic destruction, thus causing permanent blindness if not detected at an early stage. The proposed research provides deep learning frameworks for autonomous detection of Diabetic Retinopathy at an early stage using fundus images. The first framework consists of cascaded neural networks, spanned in three layers where each layer classifies data into two classes, one is the desired stage and the other output is passed to another classifier until the input image is classified as one of the stages. The second framework takes normalized, HSV and RGB fundus images as input to three Convolutional Neural Networks, and the resultant probabilistic vectors are averaged together to obtain the final output of the input image. Third framework used the Long Short Term Memory Module in CNN to emphasize the network in remembering information over a long time span. Proposed frameworks were tested and compared on the large-scale Kaggle fundus image dataset EYEPAC. The evaluations have shown that the second framework outperformed others and achieved an accuracy of 78.06% and 83.78% without and with augmentation, respectively.

13.
Comput Biol Med ; 150: 106124, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36208597

RESUMO

Prostate cancer (PCa) is one of the deadliest cancers in men, and identifying cancerous tissue patterns at an early stage can assist clinicians in timely treating the PCa spread. Many researchers have developed deep learning systems for mass-screening PCa. These systems, however, are commonly trained with well-annotated datasets in order to produce accurate results. Obtaining such data for training is often time and resource-demanding in clinical settings and can result in compromised screening performance. To address these limitations, we present a novel knowledge distillation-based instance segmentation scheme that allows conventional semantic segmentation models to perform instance-aware segmentation to extract stroma, benign, and the cancerous prostate tissues from the whole slide images (WSI) with incremental few-shot training. The extracted tissues are then used to compute majority and minority Gleason scores, which, afterward, are used in grading the PCa as per the clinical standards. The proposed scheme has been thoroughly tested on two datasets, containing around 10,516 and 11,000 WSI scans, respectively. Across both datasets, the proposed scheme outperforms state-of-the-art methods by 2.01% and 4.45%, respectively, in terms of the mean IoU score for identifying prostate tissues, and 10.73% and 11.42% in terms of F1 score for grading PCa according to the clinical standards. Furthermore, the applicability of the proposed scheme is tested under a blind experiment with a panel of expert pathologists, where it achieved a statistically significant Pearson correlation of 0.9192 and 0.8984 with the clinicians' grading.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Gradação de Tumores
14.
Comput Biol Med ; 144: 105327, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35303579

RESUMO

Electroencephalogram (EEG) based emotion classification reflects the actual and intrinsic emotional state, resulting in more reliable, natural, and meaningful human-computer interaction with applications in entertainment consumption behavior, interactive brain-computer interface, and monitoring of psychological health of patients in the domain of e-healthcare. Challenges of EEG-based emotion recognition in real-world applications are variations among experimental settings and cognitive health conditions. Parkinson's Disease (PD) is the second most common neurodegenerative disorder, resulting in impaired recognition and expression of emotions. The deficit of emotional expression poses challenges for the healthcare services provided to PD patients. This study proposes 1D-CRNN-ELM architecture, which combines one-dimensional Convolutional Recurrent Neural Network (1D-CRNN) with an Extreme Learning Machine (ELM), robust for the emotion detection of PD patients, also available for cross dataset learning with various emotions and experimental settings. In the proposed framework, after EEG preprocessing, the trained CRNN can use as a feature extractor with ELM as the classifier, and again this trained CRNN can be used for learning of new emotions set with fine-tuning of other datasets. This paper also applied cross dataset learning of emotions by training with PD patients datasets and fine-tuning with publicly available datasets of AMIGOS and SEED-IV, and vice versa. Random splitting of train and test data with 80 - 20 ratio resulted in an accuracy of 97.75% for AMIGOS, 83.20% for PD, and 86.00% for HC with six basic emotion classes. Fine-tuning of trained architecture with four emotions of the SEED-IV dataset results in 92.5% accuracy. To validate the generalization of our results, leave one subject (patient) out cross-validation is also incorporated with mean accuracies of 95.84% for AMIGOS, 75.09% for PD, 77.85% for HC, and 84.97% for SEED-IV is achieved. Only a 1 - sec segment of EEG signal from 14 channels is enough to detect emotions with this performance. The proposed method outperforms state-of-the-art studies to classify EEG-based emotions with publicly available datasets, provide cross dataset learning, and validate the robustness of the deep learning framework for real-world application of psychological healthcare monitoring of Parkinson's disease patients.


Assuntos
Interfaces Cérebro-Computador , Doença de Parkinson , Eletroencefalografia , Emoções , Humanos , Redes Neurais de Computação
15.
Sensors (Basel) ; 22(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35214448

RESUMO

The lumbar spine plays a very important role in our load transfer and mobility. Vertebrae localization and segmentation are useful in detecting spinal deformities and fractures. Understanding of automated medical imagery is of main importance to help doctors in handling the time-consuming manual or semi-manual diagnosis. Our paper presents the methods that will help clinicians to grade the severity of the disease with confidence, as the current manual diagnosis by different doctors has dissimilarity and variations in the analysis of diseases. In this paper we discuss the lumbar spine localization and segmentation which help for the analysis of lumbar spine deformities. The lumber spine is localized using YOLOv5 which is the fifth variant of the YOLO family. It is the fastest and the lightest object detector. Mean average precision (mAP) of 0.975 is achieved by YOLOv5. To diagnose the lumbar lordosis, we correlated the angles with region area that is computed from the YOLOv5 centroids and obtained 74.5% accuracy. Cropped images from YOLOv5 bounding boxes are passed through HED U-Net, which is a combination of segmentation and edge detection frameworks, to obtain the segmented vertebrae and its edges. Lumbar lordortic angles (LLAs) and lumbosacral angles (LSAs) are found after detecting the corners of vertebrae using a Harris corner detector with very small mean errors of 0.29° and 0.38°, respectively. This paper compares the different object detectors used to localize the vertebrae, the results of two methods used to diagnose the lumbar deformity, and the results with other researchers.


Assuntos
Aprendizado Profundo , Vértebras Lombares/diagnóstico por imagem , Região Lombossacral , Coluna Vertebral
16.
Sensors (Basel) ; 22(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214568

RESUMO

Human beings tend to incrementally learn from the rapidly changing environment without comprising or forgetting the already learned representations. Although deep learning also has the potential to mimic such human behaviors to some extent, it suffers from catastrophic forgetting due to which its performance on already learned tasks drastically decreases while learning about newer knowledge. Many researchers have proposed promising solutions to eliminate such catastrophic forgetting during the knowledge distillation process. However, to our best knowledge, there is no literature available to date that exploits the complex relationships between these solutions and utilizes them for the effective learning that spans over multiple datasets and even multiple domains. In this paper, we propose a continual learning objective that encompasses mutual distillation loss to understand such complex relationships and allows deep learning models to effectively retain the prior knowledge while adapting to the new classes, new datasets, and even new applications. The proposed objective was rigorously tested on nine publicly available, multi-vendor, and multimodal datasets that span over three applications, and it achieved the top-1 accuracy of 0.9863% and an F1-score of 0.9930.


Assuntos
Redes Neurais de Computação , Humanos
17.
ISA Trans ; 129(Pt A): 355-371, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35120741

RESUMO

Autonomous flights are the major industry contributors towards next-generation developments in pervasive and ubiquitous computing. Modern aerial vehicles are designed to receive actuator commands from the primary autopilot software as input to regulate their servos for adjusting control surfaces. Due to real-time interaction with the actual physical environment, there exists a high risk of control surface failures for engine, rudder, elevators, and ailerons etc. If not anticipated and then timely controlled, failures occurring during the flight can have severe and cataclysmic consequences, which may result in mid-air collision or ultimate crash. Humongous amount of sensory data being generated throughout mission-critical flights, makes it an ideal candidate for applying advanced data-driven machine learning techniques to identify intelligent insights related to failures for instant recovery from emergencies. In this paper, we present a novel framework based on machine learning techniques for failure prediction, detection, and classification for autonomous aerial vehicles. The proposed framework utilizes long short-term memory recurrent neural network architecture to analyze time series data and has been applied at the AirLab Failure and Anomaly flight dataset, which is a comprehensive publicly available dataset of various fault types in fixed-wing autonomous aerial vehicles' control surfaces. The proposed framework is able to predict failure with an average accuracy of 93% and the average time-to-predict a failure is 19 s before the actual occurrence of the failure, which is 10 s better than current state-of-the-art. Failure detection accuracy is 100% and average detection time is 0.74 s after happening of failure, which is 1.28 s better than current state-of-the-art. Failure classification accuracy of proposed framework is 100%. The performance analysis shows the strength of the proposed methodology to be used as a real-time failure prediction and a pseudo-real-time failure detection along with a failure classification framework for eventual deployment with actual mission-critical autonomous flights.

18.
PLoS One ; 17(1): e0262209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34990477

RESUMO

The automated generation of radiology reports provides X-rays and has tremendous potential to enhance the clinical diagnosis of diseases in patients. A new research direction is gaining increasing attention that involves the use of hybrid approaches based on natural language processing and computer vision techniques to create auto medical report generation systems. The auto report generator, producing radiology reports, will significantly reduce the burden on doctors and assist them in writing manual reports. Because the sensitivity of chest X-ray (CXR) findings provided by existing techniques not adequately accurate, producing comprehensive explanations for medical photographs remains a difficult task. A novel approach to address this issue was proposed, based on the continuous integration of convolutional neural networks and long short-term memory for detecting diseases, followed by the attention mechanism for sequence generation based on these diseases. Experimental results obtained by using the Indiana University CXR and MIMIC-CXR datasets showed that the proposed model attained the current state-of-the-art efficiency as opposed to other solutions of the baseline. BLEU-1, BLEU-2, BLEU-3, and BLEU-4 were used as the evaluation metrics.


Assuntos
Algoritmos , Aprendizado Profundo , Processamento de Linguagem Natural , Redes Neurais de Computação , Radiografia Torácica/métodos , Radiologia , Humanos , Raios X
19.
Foods ; 11(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37430941

RESUMO

This study investigated the effect of animal age, calcium chloride marination, and storage time on meat quality characteristics of buffalo bulls to suggest a cost-effective method of improving buffalo meat quality. The current study was designed considering the importance of buffalo meat and the usage of meat from spent buffalo animals in local markets of South Asian countries. A total of 36 animals comprised of 18 young and 18 spent buffalo bulls were selected. After slaughtering and 24 h of postmortem chilling, striploins were separated and cut into 16 steaks and equally divided into two groups, i.e., either marinated with calcium chloride or not. Meat quality characteristics were recorded on 0, 2, 4, 6, 8, and 10 days of storage. The results showed that the pH value of young animals was higher than the value of spent animals and pH was increased over the storage time. Color b*, C*, and h* values were higher in spent animals as compared with the young animals; however, values of colors L* and h* were higher and a* was lower in marinated samples than the values of non-marinated samples. Color a* and C* values were increased and h* was decreased with lengthening the storage time. The meat cooking loss was higher in marinated and the water-holding capacity was higher in non-marinated meat samples. Shear force values were lower in young animals and marinated samples than the values of spent animals and non-marinated meat samples, respectively. Sensory characteristic scores of marinated samples were better than the non-marinated samples. In conclusion, calcium chloride marination can be used to improve the quality characteristics of buffalo meat.

20.
J Pak Med Assoc ; 71(11): 2665-2668, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34783757

RESUMO

Carbuncle is a painful subcutaneous mass of interconnected infected hair follicles with multiple discharging sinuses. It has predisposition in conditions like diabetes, immune-compromised states, chronic skin diseases etc. The authors present a case of a 67 year old diabetic male admitted in July 2020 at Akbar Niazi Teaching Hospital (ANTH) Islamabad, with a giant carbuncle on his back. Due to its large size, systemic co-morbidity, and increased risk of complications in surgical treatment, a multi-disciplinary team approach was employed. Both general and plastic surgeons were involved, who performed excision and soft tissue coverage respectively. The aim of the surgical intervention methods, like wide excision and debridement, application of vacuum assisted wound closure (VAC), and skin grafting was to minimise the healing time and risk of development of post-operative infection. The patient was surgically managed and sent home in a good condition.


Assuntos
Carbúnculo , Idoso , Desbridamento , Humanos , Masculino , Pele , Transplante de Pele , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA